Class: Array

Inherits:
Object show all
Includes:
Enumerable
Defined in:
array.c

Overview

Arrays are ordered, integer-indexed collections of any object.

Array indexing starts at 0, as in C or Java. A negative index is assumed to be relative to the end of the array---that is, an index of -1 indicates the last element of the array, -2 is the next to last element in the array, and so on.

Creating Arrays

A new array can be created by using the literal constructor []. Arrays can contain different types of objects. For example, the array below contains an Integer, a String and a Float:

ary = [1, "two", 3.0] #=> [1, "two", 3.0]

An array can also be created by explicitly calling Array.new with zero, one (the initial size of the Array) or two arguments (the initial size and a default object).

ary = Array.new    #=> []
Array.new(3)       #=> [nil, nil, nil]
Array.new(3, true) #=> [true, true, true]

Note that the second argument populates the array with references to the same object. Therefore, it is only recommended in cases when you need to instantiate arrays with natively immutable objects such as Symbols, numbers, true or false.

To create an array with separate objects a block can be passed instead. This method is safe to use with mutable objects such as hashes, strings or other arrays:

Array.new(4) { Hash.new } #=> [{}, {}, {}, {}]

This is also a quick way to build up multi-dimensional arrays:

empty_table = Array.new(3) { Array.new(3) }
#=> [[nil, nil, nil], [nil, nil, nil], [nil, nil, nil]]

An array can also be created by using the Array() method, provided by Kernel, which tries to call #to_ary, then #to_a on its argument.

Array(=> "a", :b => "b") #=> [[:a, "a"], [:b, "b"]]

Example Usage

In addition to the methods it mixes in through the Enumerable module, the Array class has proprietary methods for accessing, searching and otherwise manipulating arrays.

Some of the more common ones are illustrated below.

Accessing Elements

Elements in an array can be retrieved using the Array#[] method. It can take a single integer argument (a numeric index), a pair of arguments (start and length) or a range.

arr = [1, 2, 3, 4, 5, 6]
arr[2]    #=> 3
arr[100]  #=> nil
arr[-3]   #=> 4
arr[2, 3] #=> [3, 4, 5]
arr[1..4] #=> [2, 3, 4, 5]

Another way to access a particular array element is by using the #at method

arr.at(0) #=> 1

The #slice method works in an identical manner to Array#[].

To raise an error for indices outside of the array bounds or else to provide a default value when that happens, you can use #fetch.

arr = ['a', 'b', 'c', 'd', 'e', 'f']
arr.fetch(100) #=> IndexError: index 100 outside of array bounds: -6...6
arr.fetch(100, "oops") #=> "oops"

The special methods #first and #last will return the first and last elements of an array, respectively.

arr.first #=> 1
arr.last  #=> 6

To return the first n elements of an array, use #take

arr.take(3) #=> [1, 2, 3]

#drop does the opposite of #take, by returning the elements after n elements have been dropped:

arr.drop(3) #=> [4, 5, 6]

Obtaining Information about an Array

Arrays keep track of their own length at all times. To query an array about the number of elements it contains, use #length, #count or #size.

browsers = ['Chrome', 'Firefox', 'Safari', 'Opera', 'IE']
browsers.length #=> 5
browsers.count #=> 5

To check whether an array contains any elements at all

browsers.empty? #=> false

To check whether a particular item is included in the array

browsers.include?('Konqueror') #=> false

Adding Items to Arrays

Items can be added to the end of an array by using either #push or #<<

arr = [1, 2, 3, 4]
arr.push(5) #=> [1, 2, 3, 4, 5]
arr << 6    #=> [1, 2, 3, 4, 5, 6]

#unshift will add a new item to the beginning of an array.

arr.unshift(0) #=> [0, 1, 2, 3, 4, 5, 6]

With #insert you can add a new element to an array at any position.

arr.insert(3, 'apple')  #=> [0, 1, 2, 'apple', 3, 4, 5, 6]

Using the #insert method, you can also insert multiple values at once:

arr.insert(3, 'orange', 'pear', 'grapefruit')
#=> [0, 1, 2, "orange", "pear", "grapefruit", "apple", 3, 4, 5, 6]

Removing Items from an Array

The method #pop removes the last element in an array and returns it:

arr =  [1, 2, 3, 4, 5, 6]
arr.pop #=> 6
arr #=> [1, 2, 3, 4, 5]

To retrieve and at the same time remove the first item, use #shift:

arr.shift #=> 1
arr #=> [2, 3, 4, 5]

To delete an element at a particular index:

arr.delete_at(2) #=> 4
arr #=> [2, 3, 5]

To delete a particular element anywhere in an array, use #delete:

arr = [1, 2, 2, 3]
arr.delete(2) #=> 2
arr #=> [1,3]

A useful method if you need to remove nil values from an array is #compact:

arr = ['foo', 0, nil, 'bar', 7, 'baz', nil]
arr.compact  #=> ['foo', 0, 'bar', 7, 'baz']
arr          #=> ['foo', 0, nil, 'bar', 7, 'baz', nil]
arr.compact! #=> ['foo', 0, 'bar', 7, 'baz']
arr          #=> ['foo', 0, 'bar', 7, 'baz']

Another common need is to remove duplicate elements from an array.

It has the non-destructive #uniq, and destructive method #uniq!

arr = [2, 5, 6, 556, 6, 6, 8, 9, 0, 123, 556]
arr.uniq #=> [2, 5, 6, 556, 8, 9, 0, 123]

Iterating over Arrays

Like all classes that include the Enumerable module, Array has an each method, which defines what elements should be iterated over and how. In case of Array's #each, all elements in the Array instance are yielded to the supplied block in sequence.

Note that this operation leaves the array unchanged.

arr = [1, 2, 3, 4, 5]
arr.each { |a| print a -= 10, " " }
# prints: -9 -8 -7 -6 -5
#=> [1, 2, 3, 4, 5]

Another sometimes useful iterator is #reverse_each which will iterate over the elements in the array in reverse order.

words = %w[first second third fourth fifth sixth]
str = ""
words.reverse_each { |word| str += "#{word} " }
p str #=> "sixth fifth fourth third second first "

The #map method can be used to create a new array based on the original array, but with the values modified by the supplied block:

arr.map { |a| 2*a }   #=> [2, 4, 6, 8, 10]
arr                   #=> [1, 2, 3, 4, 5]
arr.map! { |a| a**2 } #=> [1, 4, 9, 16, 25]
arr                   #=> [1, 4, 9, 16, 25]

Selecting Items from an Array

Elements can be selected from an array according to criteria defined in a block. The selection can happen in a destructive or a non-destructive manner. While the destructive operations will modify the array they were called on, the non-destructive methods usually return a new array with the selected elements, but leave the original array unchanged.

Non-destructive Selection

arr = [1, 2, 3, 4, 5, 6]
arr.select { |a| a > 3 }     #=> [4, 5, 6]
arr.reject { |a| a < 3 }     #=> [3, 4, 5, 6]
arr.drop_while { |a| a < 4 } #=> [4, 5, 6]
arr                          #=> [1, 2, 3, 4, 5, 6]

Destructive Selection

#select! and #reject! are the corresponding destructive methods to #select and #reject

Similar to #select vs. #reject, #delete_if and #keep_if have the exact opposite result when supplied with the same block:

arr.delete_if { |a| a < 4 } #=> [4, 5, 6]
arr                         #=> [4, 5, 6]

arr = [1, 2, 3, 4, 5, 6]
arr.keep_if { |a| a < 4 } #=> [1, 2, 3]
arr                       #=> [1, 2, 3]

Class Method Summary (collapse)

Instance Method Summary (collapse)

Methods included from Enumerable

#all?, #any?, #chunk, #collect_concat, #detect, #each_cons, #each_entry, #each_slice, #each_with_index, #each_with_object, #entries, #find, #find_all, #flat_map, #grep, #group_by, #inject, #lazy, #max, #max_by, #member?, #min, #min_by, #minmax, #minmax_by, #none?, #one?, #partition, #reduce, #slice_before, #sort_by

Constructor Details

- (Object) new(size = 0, obj = nil) - (Object) new(array) - (Object) new(size) {|index| ... }

Returns a new array.

In the first form, if no arguments are sent, the new array will be empty. When a size and an optional obj are sent, an array is created with size copies of obj. Take notice that all elements will reference the same object obj.

The second form creates a copy of the array passed as a parameter (the array is generated by calling to_ary on the parameter).

first_array = ["Matz", "Guido"]

second_array = Array.new(first_array) #=> ["Matz", "Guido"]

first_array.equal? second_array       #=> false

In the last form, an array of the given size is created. Each element in this array is created by passing the element's index to the given block and storing the return value.

Array.new(3){ |index| index ** 2 }
# => [0, 1, 4]

Common gotchas

When sending the second parameter, the same object will be used as the value for all the array elements:

a = Array.new(2, Hash.new)
# => [{}, {}]

a[0]['cat'] = 'feline'
a # => [{"cat"=>"feline"}, {"cat"=>"feline"}]

a[1]['cat'] = 'Felix'
a # => [{"cat"=>"Felix"}, {"cat"=>"Felix"}]

Since all the Array elements store the same hash, changes to one of them will affect them all.

If multiple copies are what you want, you should use the block version which uses the result of that block each time an element of the array needs to be initialized:

a = Array.new(2) { Hash.new }
a[0]['cat'] = 'feline'
a # => [{"cat"=>"feline"}, {}]

Overloads:

  • - (Object) new(size) {|index| ... }

    Yields:

    • (index)


703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
# File 'array.c', line 703

static VALUE
rb_ary_initialize(int argc, VALUE *argv, VALUE ary)
{
    long len;
    VALUE size, val;

    rb_ary_modify(ary);
    if (argc == 0) {
	if (ARY_OWNS_HEAP_P(ary) && RARRAY_RAWPTR(ary) != 0) {
	    xfree((void *)RARRAY_RAWPTR(ary));
	}
        rb_ary_unshare_safe(ary);
        FL_SET_EMBED(ary);
	ARY_SET_EMBED_LEN(ary, 0);
	if (rb_block_given_p()) {
	    rb_warning("given block not used");
	}
	return ary;
    }
    rb_scan_args(argc, argv, "02", &size, &val);
    if (argc == 1 && !FIXNUM_P(size)) {
	val = rb_check_array_type(size);
	if (!NIL_P(val)) {
	    rb_ary_replace(ary, val);
	    return ary;
	}
    }

    len = NUM2LONG(size);
    if (len < 0) {
	rb_raise(rb_eArgError, "negative array size");
    }
    if (len > ARY_MAX_SIZE) {
	rb_raise(rb_eArgError, "array size too big");
    }
    rb_ary_modify(ary);
    ary_resize_capa(ary, len);
    if (rb_block_given_p()) {
	long i;

	if (argc == 2) {
	    rb_warn("block supersedes default value argument");
	}
	for (i=0; i<len; i++) {
	    rb_ary_store(ary, i, rb_yield(LONG2NUM(i)));
	    ARY_SET_LEN(ary, i + 1);
	}
    }
    else {
	ary_memfill(ary, 0, len, val);
	ARY_SET_LEN(ary, len);
    }
    return ary;
}

Class Method Details

+ (Object) []

Returns a new array populated with the given objects.

Array.[]( 1, 'a', /^A/ ) # => [1, "a", /^A/]
Array[ 1, 'a', /^A/ ]    # => [1, "a", /^A/]
[ 1, 'a', /^A/ ]         # => [1, "a", /^A/]


766
767
768
769
770
771
772
773
774
775
776
# File 'array.c', line 766

static VALUE
rb_ary_s_create(int argc, VALUE *argv, VALUE klass)
{
    VALUE ary = ary_new(klass, argc);
    if (argc > 0 && argv) {
        ary_memcpy(ary, 0, argc, argv);
        ARY_SET_LEN(ary, argc);
    }

    return ary;
}

+ (Array?) try_convert(obj)

Tries to convert obj into an array, using to_ary method. Returns the converted array or nil if obj cannot be converted for any reason. This method can be used to check if an argument is an array.

Array.try_convert([1])   #=> [1]
Array.try_convert("1")   #=> nil

if tmp = Array.try_convert(arg)
  # the argument is an array
elsif tmp = String.try_convert(arg)
  # the argument is a string
end

Returns:



641
642
643
644
645
# File 'array.c', line 641

static VALUE
rb_ary_s_try_convert(VALUE dummy, VALUE ary)
{
    return rb_check_array_type(ary);
}

Instance Method Details

- (Object) &(other_ary)

Set Intersection --- Returns a new array containing elements common to the two arrays, excluding any duplicates. The order is preserved from the original array.

It compares elements using their #hash and #eql? methods for efficiency.

[ 1, 1, 3, 5 ] & [ 1, 2, 3 ]                 #=> [ 1, 3 ]
[ 'a', 'b', 'b', 'z' ] & [ 'a', 'b', 'c' ]   #=> [ 'a', 'b' ]

See also Array#uniq.



3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
# File 'array.c', line 3929

static VALUE
rb_ary_and(VALUE ary1, VALUE ary2)
{
    VALUE hash, ary3, v;
    st_data_t vv;
    long i;

    ary2 = to_ary(ary2);
    ary3 = rb_ary_new2(RARRAY_LEN(ary1) < RARRAY_LEN(ary2) ?
	    RARRAY_LEN(ary1) : RARRAY_LEN(ary2));
    hash = ary_make_hash(ary2);

    if (RHASH_EMPTY_P(hash))
        return ary3;

    for (i=0; i<RARRAY_LEN(ary1); i++) {
	vv = (st_data_t)(v = rb_ary_elt(ary1, i));
	if (st_delete(rb_hash_tbl_raw(hash), &vv, 0)) {
	    rb_ary_push(ary3, v);
	}
    }
    ary_recycle_hash(hash);

    return ary3;
}

- (Object) *(int) - (Object) *(str)

Repetition --- With a String argument, equivalent to ary.join(str).

Otherwise, returns a new array built by concatenating the int copies of self.

[ 1, 2, 3 ] * 3    #=> [ 1, 2, 3, 1, 2, 3, 1, 2, 3 ]
[ 1, 2, 3 ] * ","  #=> "1,2,3"


3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
# File 'array.c', line 3487

static VALUE
rb_ary_times(VALUE ary, VALUE times)
{
    VALUE ary2, tmp;
    const VALUE *ptr;
    long t, len;

    tmp = rb_check_string_type(times);
    if (!NIL_P(tmp)) {
	return rb_ary_join(ary, tmp);
    }

    len = NUM2LONG(times);
    if (len == 0) {
	ary2 = ary_new(rb_obj_class(ary), 0);
	goto out;
    }
    if (len < 0) {
	rb_raise(rb_eArgError, "negative argument");
    }
    if (ARY_MAX_SIZE/len < RARRAY_LEN(ary)) {
	rb_raise(rb_eArgError, "argument too big");
    }
    len *= RARRAY_LEN(ary);

    ary2 = ary_new(rb_obj_class(ary), len);
    ARY_SET_LEN(ary2, len);

    ptr = RARRAY_RAWPTR(ary);
    t = RARRAY_LEN(ary);
    if (0 < t) {
	ary_memcpy(ary2, 0, t, ptr);
	while (t <= len/2) {
	    ary_memcpy(ary2, t, t, RARRAY_RAWPTR(ary2));
            t *= 2;
        }
        if (t < len) {
	    ary_memcpy(ary2, t, len-t, RARRAY_RAWPTR(ary2));
        }
    }
  out:
    OBJ_INFECT(ary2, ary);

    return ary2;
}

- (Object) +(other_ary)

Concatenation --- Returns a new array built by concatenating the two arrays together to produce a third array.

[ 1, 2, 3 ] + [ 4, 5 ]    #=> [ 1, 2, 3, 4, 5 ]
a = [ "a", "b", "c" ]
c = a + [ "d", "e", "f" ]
c                         #=> [ "a", "b", "c", "d", "e", "f" ]
a                         #=> [ "a", "b", "c" ]

See also Array#concat.



3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
# File 'array.c', line 3426

VALUE
rb_ary_plus(VALUE x, VALUE y)
{
    VALUE z;
    long len, xlen, ylen;

    y = to_ary(y);
    xlen = RARRAY_LEN(x);
    ylen = RARRAY_LEN(y);
    len = xlen + ylen;
    z = rb_ary_new2(len);

    ary_memcpy(z, 0, xlen, RARRAY_RAWPTR(x));
    ary_memcpy(z, xlen, ylen, RARRAY_RAWPTR(y));
    ARY_SET_LEN(z, len);
    return z;
}

- (Object) -(other_ary)

Array Difference

Returns a new array that is a copy of the original array, removing any items that also appear in other_ary. The order is preserved from the original array.

It compares elements using their #hash and #eql? methods for efficiency.

[ 1, 1, 2, 2, 3, 3, 4, 5 ] - [ 1, 2, 4 ]  #=>  [ 3, 3, 5 ]

If you need set-like behavior, see the library class Set.



3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
# File 'array.c', line 3894

static VALUE
rb_ary_diff(VALUE ary1, VALUE ary2)
{
    VALUE ary3;
    volatile VALUE hash;
    long i;

    hash = ary_make_hash(to_ary(ary2));
    ary3 = rb_ary_new();

    for (i=0; i<RARRAY_LEN(ary1); i++) {
	if (st_lookup(rb_hash_tbl_raw(hash), RARRAY_AREF(ary1, i), 0)) continue;
	rb_ary_push(ary3, rb_ary_elt(ary1, i));
    }
    ary_recycle_hash(hash);
    return ary3;
}

- (Object) <<(obj)

Append---Pushes the given object on to the end of this array. This expression returns the array itself, so several appends may be chained together.

[ 1, 2 ] << "c" << "d" << [ 3, 4 ]
        #=>  [ 1, 2, "c", "d", [ 3, 4 ] ]


882
883
884
885
886
887
888
889
890
891
# File 'array.c', line 882

VALUE
rb_ary_push(VALUE ary, VALUE item)
{
    long idx = RARRAY_LEN(ary);

    ary_ensure_room_for_push(ary, 1);
    RARRAY_ASET(ary, idx, item);
    ARY_SET_LEN(ary, idx + 1);
    return ary;
}

- (-1, ...) <=>(other_ary)

Comparison --- Returns an integer (-1, 0, or +1) if this array is less than, equal to, or greater than other_ary.

nil is returned if the two values are incomparable.

Each object in each array is compared (using the <=> operator).

Arrays are compared in an "element-wise" manner; the first two elements that are not equal will determine the return value for the whole comparison.

If all the values are equal, then the return is based on a comparison of the array lengths. Thus, two arrays are "equal" according to Array#<=> if, and only if, they have the same length and the value of each element is equal to the value of the corresponding element in the other array.

[ "a", "a", "c" ]    <=> [ "a", "b", "c" ]   #=> -1
[ 1, 2, 3, 4, 5, 6 ] <=> [ 1, 2 ]            #=> +1

Returns:

  • (-1, 0, +1, nil)


3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
# File 'array.c', line 3802

VALUE
rb_ary_cmp(VALUE ary1, VALUE ary2)
{
    long len;
    VALUE v;

    ary2 = rb_check_array_type(ary2);
    if (NIL_P(ary2)) return Qnil;
    if (ary1 == ary2) return INT2FIX(0);
    v = rb_exec_recursive_paired(recursive_cmp, ary1, ary2, ary2);
    if (v != Qundef) return v;
    len = RARRAY_LEN(ary1) - RARRAY_LEN(ary2);
    if (len == 0) return INT2FIX(0);
    if (len > 0) return INT2FIX(1);
    return INT2FIX(-1);
}

- (Boolean) ==(other_ary)

Equality --- Two arrays are equal if they contain the same number of elements and if each element is equal to (according to Object#==) the corresponding element in other_ary.

[ "a", "c" ]    == [ "a", "c", 7 ]     #=> false
[ "a", "c", 7 ] == [ "a", "c", 7 ]     #=> true
[ "a", "c", 7 ] == [ "a", "d", "f" ]   #=> false

Returns:

  • (Boolean)


3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
# File 'array.c', line 3649

static VALUE
rb_ary_equal(VALUE ary1, VALUE ary2)
{
    if (ary1 == ary2) return Qtrue;
    if (!RB_TYPE_P(ary2, T_ARRAY)) {
	if (!rb_respond_to(ary2, rb_intern("to_ary"))) {
	    return Qfalse;
	}
	return rb_equal(ary2, ary1);
    }
    if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
    if (RARRAY_RAWPTR(ary1) == RARRAY_RAWPTR(ary2)) return Qtrue;
    return rb_exec_recursive_paired(recursive_equal, ary1, ary2, ary2);
}

- (Object?) [](index) - (nil) [](start, length) - (nil) [](range) - (Object?) slice(index) - (nil) slice(start, length) - (nil) slice(range)

Element Reference --- Returns the element at index, or returns a subarray starting at the start index and continuing for length elements, or returns a subarray specified by range of indices.

Negative indices count backward from the end of the array (-1 is the last element). For start and range cases the starting index is just before an element. Additionally, an empty array is returned when the starting index for an element range is at the end of the array.

Returns nil if the index (or starting index) are out of range.

a = [ "a", "b", "c", "d", "e" ]
a[2] +  a[0] + a[1]    #=> "cab"
a[6]                   #=> nil
a[1, 2]                #=> [ "b", "c" ]
a[1..3]                #=> [ "b", "c", "d" ]
a[4..7]                #=> [ "e" ]
a[6..10]               #=> nil
a[-3, 3]               #=> [ "c", "d", "e" ]
# special cases
a[5]                   #=> nil
a[6, 1]                #=> nil
a[5, 1]                #=> []
a[5..10]               #=> []

Overloads:

  • - (Object?) [](index)

    Returns:

  • - (nil) [](start, length)

    Returns:

    • (nil)
  • - (nil) [](range)

    Returns:

    • (nil)
  • - (Object?) slice(index)

    Returns:

  • - (nil) slice(start, length)

    Returns:

    • (nil)
  • - (nil) slice(range)

    Returns:

    • (nil)


1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
# File 'array.c', line 1227

VALUE
rb_ary_aref(int argc, VALUE *argv, VALUE ary)
{
    VALUE arg;
    long beg, len;

    if (argc == 2) {
	beg = NUM2LONG(argv[0]);
	len = NUM2LONG(argv[1]);
	if (beg < 0) {
	    beg += RARRAY_LEN(ary);
	}
	return rb_ary_subseq(ary, beg, len);
    }
    if (argc != 1) {
	rb_scan_args(argc, argv, "11", NULL, NULL);
    }
    arg = argv[0];
    /* special case - speeding up */
    if (FIXNUM_P(arg)) {
	return rb_ary_entry(ary, FIX2LONG(arg));
    }
    /* check if idx is Range */
    switch (rb_range_beg_len(arg, &beg, &len, RARRAY_LEN(ary), 0)) {
      case Qfalse:
	break;
      case Qnil:
	return Qnil;
      default:
	return rb_ary_subseq(ary, beg, len);
    }
    return rb_ary_entry(ary, NUM2LONG(arg));
}

- (Object) []=(index) - (Object?) []=(start, length) - (Object?) []=(range)

Element Assignment --- Sets the element at index, or replaces a subarray from the start index for length elements, or replaces a subarray specified by the range of indices.

If indices are greater than the current capacity of the array, the array grows automatically. Elements are inserted into the array at start if length is zero.

Negative indices will count backward from the end of the array. For start and range cases the starting index is just before an element.

An IndexError is raised if a negative index points past the beginning of the array.

See also Array#push, and Array#unshift.

a = Array.new
a[4] = "4";                 #=> [nil, nil, nil, nil, "4"]
a[0, 3] = [ 'a', 'b', 'c' ] #=> ["a", "b", "c", nil, "4"]
a[1..2] = [ 1, 2 ]          #=> ["a", 1, 2, nil, "4"]
a[0, 2] = "?"               #=> ["?", 2, nil, "4"]
a[0..2] = "A"               #=> ["A", "4"]
a[-1]   = "Z"               #=> ["A", "Z"]
a[1..-1] = nil              #=> ["A", nil]
a[1..-1] = []               #=> ["A"]
a[0, 0] = [ 1, 2 ]          #=> [1, 2, "A"]
a[3, 0] = "B"               #=> [1, 2, "A", "B"]

Overloads:



1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
# File 'array.c', line 1651

static VALUE
rb_ary_aset(int argc, VALUE *argv, VALUE ary)
{
    long offset, beg, len;

    if (argc == 3) {
	rb_ary_modify_check(ary);
	beg = NUM2LONG(argv[0]);
	len = NUM2LONG(argv[1]);
	rb_ary_splice(ary, beg, len, argv[2]);
	return argv[2];
    }
    rb_check_arity(argc, 2, 2);
    rb_ary_modify_check(ary);
    if (FIXNUM_P(argv[0])) {
	offset = FIX2LONG(argv[0]);
	goto fixnum;
    }
    if (rb_range_beg_len(argv[0], &beg, &len, RARRAY_LEN(ary), 1)) {
	/* check if idx is Range */
	rb_ary_splice(ary, beg, len, argv[1]);
	return argv[1];
    }

    offset = NUM2LONG(argv[0]);
fixnum:
    rb_ary_store(ary, offset, argv[1]);
    return argv[1];
}

- (nil) assoc(obj)

Searches through an array whose elements are also arrays comparing obj with the first element of each contained array using obj.==.

Returns the first contained array that matches (that is, the first associated array), or nil if no match is found.

See also Array#rassoc

s1 = [ "colors", "red", "blue", "green" ]
s2 = [ "letters", "a", "b", "c" ]
s3 = "foo"
a  = [ s1, s2, s3 ]
a.assoc("letters")  #=> [ "letters", "a", "b", "c" ]
a.assoc("foo")      #=> nil

Returns:

  • (nil)


3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
# File 'array.c', line 3553

VALUE
rb_ary_assoc(VALUE ary, VALUE key)
{
    long i;
    VALUE v;

    for (i = 0; i < RARRAY_LEN(ary); ++i) {
	v = rb_check_array_type(RARRAY_AREF(ary, i));
	if (!NIL_P(v) && RARRAY_LEN(v) > 0 &&
	    rb_equal(RARRAY_AREF(v, 0), key))
	    return v;
    }
    return Qnil;
}

- (Object?) at(index)

Returns the element at index. A negative index counts from the end of self. Returns nil if the index is out of range. See also Array#[].

a = [ "a", "b", "c", "d", "e" ]
a.at(0)     #=> "a"
a.at(-1)    #=> "e"

Returns:



1274
1275
1276
1277
1278
# File 'array.c', line 1274

static VALUE
rb_ary_at(VALUE ary, VALUE pos)
{
    return rb_ary_entry(ary, NUM2LONG(pos));
}

- (Object) bsearch {|x| ... }

By using binary search, finds a value from this array which meets the given condition in O(log n) where n is the size of the array.

You can use this method in two use cases: a find-minimum mode and a find-any mode. In either case, the elements of the array must be monotone (or sorted) with respect to the block.

In find-minimum mode (this is a good choice for typical use case), the block must return true or false, and there must be an index i (0 <= i <= ary.size) so that:

  • the block returns false for any element whose index is less than i, and

  • the block returns true for any element whose index is greater than or equal to i.

This method returns the i-th element. If i is equal to ary.size, it returns nil.

ary = [0, 4, 7, 10, 12]
ary.bsearch {|x| x >=   4 } #=> 4
ary.bsearch {|x| x >=   6 } #=> 7
ary.bsearch {|x| x >=  -1 } #=> 0
ary.bsearch {|x| x >= 100 } #=> nil

In find-any mode (this behaves like libc's bsearch(3)), the block must return a number, and there must be two indices i and j (0 <= i <= j <= ary.size) so that:

  • the block returns a positive number for ary if 0 <= k < i,

  • the block returns zero for ary if i <= k < j, and

  • the block returns a negative number for ary if j <= k < ary.size.

Under this condition, this method returns any element whose index is within i...j. If i is equal to j (i.e., there is no element that satisfies the block), this method returns nil.

ary = [0, 4, 7, 10, 12]
# try to find v such that 4 <= v < 8
ary.bsearch {|x| 1 - x / 4 } #=> 4 or 7
# try to find v such that 8 <= v < 10
ary.bsearch {|x| 4 - x / 2 } #=> nil

You must not mix the two modes at a time; the block must always return either true/false, or always return a number. It is undefined which value is actually picked up at each iteration.

Yields:

  • (x)


2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
# File 'array.c', line 2496

static VALUE
rb_ary_bsearch(VALUE ary)
{
    long low = 0, high = RARRAY_LEN(ary), mid;
    int smaller = 0, satisfied = 0;
    VALUE v, val;

    RETURN_ENUMERATOR(ary, 0, 0);
    while (low < high) {
	mid = low + ((high - low) / 2);
	val = rb_ary_entry(ary, mid);
	v = rb_yield(val);
	if (FIXNUM_P(v)) {
	    if (FIX2INT(v) == 0) return val;
	    smaller = FIX2INT(v) < 0;
	}
	else if (v == Qtrue) {
	    satisfied = 1;
	    smaller = 1;
	}
	else if (v == Qfalse || v == Qnil) {
	    smaller = 0;
	}
	else if (rb_obj_is_kind_of(v, rb_cNumeric)) {
	    switch (rb_cmpint(rb_funcall(v, id_cmp, 1, INT2FIX(0)), v, INT2FIX(0))) {
		case 0: return val;
		case 1: smaller = 1; break;
		case -1: smaller = 0;
	    }
	}
	else {
	    rb_raise(rb_eTypeError, "wrong argument type %s"
		" (must be numeric, true, false or nil)",
		rb_obj_classname(v));
	}
	if (smaller) {
	    high = mid;
	}
	else {
	    low = mid + 1;
	}
    }
    if (low == RARRAY_LEN(ary)) return Qnil;
    if (!satisfied) return Qnil;
    return rb_ary_entry(ary, low);
}

- (Object) clear

Removes all elements from self.

a = [ "a", "b", "c", "d", "e" ]
a.clear    #=> [ ]


3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
# File 'array.c', line 3297

VALUE
rb_ary_clear(VALUE ary)
{
    rb_ary_modify_check(ary);
    ARY_SET_LEN(ary, 0);
    if (ARY_SHARED_P(ary)) {
	if (!ARY_EMBED_P(ary)) {
	    rb_ary_unshare(ary);
	    FL_SET_EMBED(ary);
	}
    }
    else if (ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) {
	ary_resize_capa(ary, ARY_DEFAULT_SIZE * 2);
    }
    return ary;
}

- (Object) collect {|item| ... } - (Object) map {|item| ... } - (Enumerator) collect - (Enumerator) map

Invokes the given block once for each element of self.

Creates a new array containing the values returned by the block.

See also Enumerable#collect.

If no block is given, an Enumerator is returned instead.

a = [ "a", "b", "c", "d" ]
a.map { |x| x + "!" }   #=> ["a!", "b!", "c!", "d!"]
a                       #=> ["a", "b", "c", "d"]

Overloads:



2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
# File 'array.c', line 2595

static VALUE
rb_ary_collect(VALUE ary)
{
    long i;
    VALUE collect;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    collect = rb_ary_new2(RARRAY_LEN(ary));
    for (i = 0; i < RARRAY_LEN(ary); i++) {
	rb_ary_push(collect, rb_yield(RARRAY_AREF(ary, i)));
    }
    return collect;
}

- (Object) collect! {|item| ... } - (Object) map! {|item| ... } - (Enumerator) collect! - (Enumerator) map!

Invokes the given block once for each element of self, replacing the element with the value returned by the block.

See also Enumerable#collect.

If no block is given, an Enumerator is returned instead.

a = [ "a", "b", "c", "d" ]
a.map! {|x| x + "!" }
a #=>  [ "a!", "b!", "c!", "d!" ]

Overloads:



2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
# File 'array.c', line 2629

static VALUE
rb_ary_collect_bang(VALUE ary)
{
    long i;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    rb_ary_modify(ary);
    for (i = 0; i < RARRAY_LEN(ary); i++) {
	rb_ary_store(ary, i, rb_yield(RARRAY_AREF(ary, i)));
    }
    return ary;
}

- (Object) combination(n) {|c| ... } - (Enumerator) combination(n)

When invoked with a block, yields all combinations of length n of elements from the array and then returns the array itself.

The implementation makes no guarantees about the order in which the combinations are yielded.

If no block is given, an Enumerator is returned instead.

Examples:

a = [1, 2, 3, 4]
a.combination(1).to_a  #=> [[1],[2],[3],[4]]
a.combination(2).to_a  #=> [[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
a.combination(3).to_a  #=> [[1,2,3],[1,2,4],[1,3,4],[2,3,4]]
a.combination(4).to_a  #=> [[1,2,3,4]]
a.combination(0).to_a  #=> [[]] # one combination of length 0
a.combination(5).to_a  #=> []   # no combinations of length 5

Overloads:



4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
# File 'array.c', line 4807

static VALUE
rb_ary_combination(VALUE ary, VALUE num)
{
    long n, i, len;

    n = NUM2LONG(num);
    RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_combination_size);
    len = RARRAY_LEN(ary);
    if (n < 0 || len < n) {
	/* yield nothing */
    }
    else if (n == 0) {
	rb_yield(rb_ary_new2(0));
    }
    else if (n == 1) {
	for (i = 0; i < len; i++) {
	    rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
	}
    }
    else {
	volatile VALUE t0 = tmpbuf(n+1, sizeof(long));
	long *stack = (long*)RSTRING_PTR(t0);
	volatile VALUE cc = tmpary(n);
	VALUE *chosen = RARRAY_PTR(cc);
	long lev = 0;

	MEMZERO(stack, long, n);
	stack[0] = -1;
	for (;;) {
	    chosen[lev] = RARRAY_AREF(ary, stack[lev+1]);
	    for (lev++; lev < n; lev++) {
		chosen[lev] = RARRAY_AREF(ary, stack[lev+1] = stack[lev]+1);
	    }
	    rb_yield(rb_ary_new4(n, chosen));
	    if (RBASIC(t0)->klass) {
		rb_raise(rb_eRuntimeError, "combination reentered");
	    }
	    do {
		if (lev == 0) goto done;
		stack[lev--]++;
	    } while (stack[lev+1]+n == len+lev+1);
	}
    done:
	tmpbuf_discard(t0);
	tmpary_discard(cc);
    }
    return ary;
}

- (Object) compact

Returns a copy of self with all nil elements removed.

[ "a", nil, "b", nil, "c", nil ].compact
                  #=> [ "a", "b", "c" ]


4164
4165
4166
4167
4168
4169
4170
# File 'array.c', line 4164

static VALUE
rb_ary_compact(VALUE ary)
{
    ary = rb_ary_dup(ary);
    rb_ary_compact_bang(ary);
    return ary;
}

- (nil) compact!

Removes nil elements from the array.

Returns nil if no changes were made, otherwise returns the array.

[ "a", nil, "b", nil, "c" ].compact! #=> [ "a", "b", "c" ]
[ "a", "b", "c" ].compact!           #=> nil

Returns:

  • (nil)


4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
# File 'array.c', line 4128

static VALUE
rb_ary_compact_bang(VALUE ary)
{
    VALUE *p, *t, *end;
    long n;

    rb_ary_modify(ary);
    p = t = (VALUE *)RARRAY_RAWPTR(ary); /* WB: no new reference */
    end = p + RARRAY_LEN(ary);

    while (t < end) {
	if (NIL_P(*t)) t++;
	else *p++ = *t++;
    }
    n = p - RARRAY_RAWPTR(ary);
    if (RARRAY_LEN(ary) == n) {
	return Qnil;
    }
    ARY_SET_LEN(ary, n);
    if (n * 2 < ARY_CAPA(ary) && ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) {
	ary_resize_capa(ary, n * 2);
    }

    return ary;
}

- (Object) concat(other_ary)

Appends the elements of other_ary to self.

[ "a", "b" ].concat( ["c", "d"] ) #=> [ "a", "b", "c", "d" ]
a = [ 1, 2, 3 ]
a.concat( [ 4, 5 ] )
a                                 #=> [ 1, 2, 3, 4, 5 ]

See also Array#+.



3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
# File 'array.c', line 3458

VALUE
rb_ary_concat(VALUE x, VALUE y)
{
    rb_ary_modify_check(x);
    y = to_ary(y);
    if (RARRAY_LEN(y) > 0) {
	rb_ary_splice(x, RARRAY_LEN(x), 0, y);
    }
    return x;
}

- (Integer) count - (Integer) count(obj) - (Integer) count {|item| ... }

Returns the number of elements.

If an argument is given, counts the number of elements which equal obj using ==.

If a block is given, counts the number of elements for which the block returns a true value.

ary = [1, 2, 4, 2]
ary.count                  #=> 4
ary.count(2)               #=> 2
ary.count { |x| x%2 == 0 } #=> 3

Overloads:



4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
# File 'array.c', line 4193

static VALUE
rb_ary_count(int argc, VALUE *argv, VALUE ary)
{
    long i, n = 0;

    if (argc == 0) {
	VALUE v;

	if (!rb_block_given_p())
	    return LONG2NUM(RARRAY_LEN(ary));

	for (i = 0; i < RARRAY_LEN(ary); i++) {
	    v = RARRAY_AREF(ary, i);
	    if (RTEST(rb_yield(v))) n++;
	}
    }
    else {
	VALUE obj;

	rb_scan_args(argc, argv, "1", &obj);
	if (rb_block_given_p()) {
	    rb_warn("given block not used");
	}
	for (i = 0; i < RARRAY_LEN(ary); i++) {
	    if (rb_equal(RARRAY_AREF(ary, i), obj)) n++;
	}
    }

    return LONG2NUM(n);
}

- (nil) cycle(n = nil) {|obj| ... } - (Enumerator) cycle(n = nil)

Calls the given block for each element n times or forever if nil is given.

Does nothing if a non-positive number is given or the array is empty.

Returns nil if the loop has finished without getting interrupted.

If no block is given, an Enumerator is returned instead.

a = ["a", "b", "c"]
a.cycle { |x| puts x }     # print, a, b, c, a, b, c,.. forever.
a.cycle(2) { |x| puts x }  # print, a, b, c, a, b, c.

Overloads:

  • - (nil) cycle(n = nil) {|obj| ... }

    Yields:

    • (obj)

    Returns:

    • (nil)
  • - (Enumerator) cycle(n = nil)

    Returns:



4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
# File 'array.c', line 4594

static VALUE
rb_ary_cycle(int argc, VALUE *argv, VALUE ary)
{
    long n, i;
    VALUE nv = Qnil;

    rb_scan_args(argc, argv, "01", &nv);

    RETURN_SIZED_ENUMERATOR(ary, argc, argv, rb_ary_cycle_size);
    if (NIL_P(nv)) {
        n = -1;
    }
    else {
        n = NUM2LONG(nv);
        if (n <= 0) return Qnil;
    }

    while (RARRAY_LEN(ary) > 0 && (n < 0 || 0 < n--)) {
        for (i=0; i<RARRAY_LEN(ary); i++) {
            rb_yield(RARRAY_AREF(ary, i));
        }
    }
    return Qnil;
}

- (nil) delete(obj) - (Object) delete(obj) { ... }

Deletes all items from self that are equal to obj.

Returns the last deleted item, or nil if no matching item is found.

If the optional code block is given, the result of the block is returned if the item is not found. (To remove nil elements and get an informative return value, use Array#compact!)

a = [ "a", "b", "b", "b", "c" ]
a.delete("b")                   #=> "b"
a                               #=> ["a", "c"]
a.delete("z")                   #=> nil
a.delete("z") { "not found" }   #=> "not found"

Overloads:

  • - (nil) delete(obj)

    Returns:

    • (nil)
  • - (Object) delete(obj) { ... }

    Yields:



2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
# File 'array.c', line 2822

VALUE
rb_ary_delete(VALUE ary, VALUE item)
{
    VALUE v = item;
    long i1, i2;

    for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
	VALUE e = RARRAY_AREF(ary, i1);

	if (rb_equal(e, item)) {
	    v = e;
	    continue;
	}
	if (i1 != i2) {
	    rb_ary_store(ary, i2, e);
	}
	i2++;
    }
    if (RARRAY_LEN(ary) == i2) {
	if (rb_block_given_p()) {
	    return rb_yield(item);
	}
	return Qnil;
    }

    ary_resize_smaller(ary, i2);

    return v;
}

- (Object?) delete_at(index)

Deletes the element at the specified index, returning that element, or nil if the index is out of range.

See also Array#slice!

a = ["ant", "bat", "cat", "dog"]
a.delete_at(2)    #=> "cat"
a                 #=> ["ant", "bat", "dog"]
a.delete_at(99)   #=> nil

Returns:



2912
2913
2914
2915
2916
# File 'array.c', line 2912

static VALUE
rb_ary_delete_at_m(VALUE ary, VALUE pos)
{
    return rb_ary_delete_at(ary, NUM2LONG(pos));
}

- (Object) delete_if {|item| ... } - (Enumerator) delete_if

Deletes every element of self for which block evaluates to true.

The array is changed instantly every time the block is called, not after the iteration is over.

See also Array#reject!

If no block is given, an Enumerator is returned instead.

scores = [ 97, 42, 75 ]
scores.delete_if {|score| score < 80 }   #=> [97]

Overloads:



3089
3090
3091
3092
3093
3094
3095
# File 'array.c', line 3089

static VALUE
rb_ary_delete_if(VALUE ary)
{
    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    ary_reject_bang(ary);
    return ary;
}

- (Object) drop(n)

Drops first n elements from ary and returns the rest of the elements in an array.

If a negative number is given, raises an ArgumentError.

See also Array#take

a = [1, 2, 3, 4, 5, 0]
a.drop(3)             #=> [4, 5, 0]


5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
# File 'array.c', line 5242

static VALUE
rb_ary_drop(VALUE ary, VALUE n)
{
    VALUE result;
    long pos = NUM2LONG(n);
    if (pos < 0) {
	rb_raise(rb_eArgError, "attempt to drop negative size");
    }

    result = rb_ary_subseq(ary, pos, RARRAY_LEN(ary));
    if (result == Qnil) result = rb_ary_new();
    return result;
}

- (Object) drop_while {|arr| ... } - (Enumerator) drop_while

Drops elements up to, but not including, the first element for which the block returns nil or false and returns an array containing the remaining elements.

If no block is given, an Enumerator is returned instead.

See also Array#take_while

a = [1, 2, 3, 4, 5, 0]
a.drop_while {|i| i < 3 }   #=> [3, 4, 5, 0]

Overloads:



5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
# File 'array.c', line 5274

static VALUE
rb_ary_drop_while(VALUE ary)
{
    long i;

    RETURN_ENUMERATOR(ary, 0, 0);
    for (i = 0; i < RARRAY_LEN(ary); i++) {
	if (!RTEST(rb_yield(RARRAY_AREF(ary, i)))) break;
    }
    return rb_ary_drop(ary, LONG2FIX(i));
}

- (Object) each {|item| ... } - (Enumerator) each

Calls the given block once for each element in self, passing that element as a parameter.

An Enumerator is returned if no block is given.

a = [ "a", "b", "c" ]
a.each {|x| print x, " -- " }

produces:

a -- b -- c --

Overloads:



1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
# File 'array.c', line 1741

VALUE
rb_ary_each(VALUE array)
{
    long i;
    volatile VALUE ary = array;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    for (i=0; i<RARRAY_LEN(ary); i++) {
	rb_yield(RARRAY_AREF(ary, i));
    }
    return ary;
}

- (Object) each_index {|index| ... } - (Enumerator) each_index

Same as Array#each, but passes the index of the element instead of the element itself.

An Enumerator is returned if no block is given.

a = [ "a", "b", "c" ]
a.each_index {|x| print x, " -- " }

produces:

0 -- 1 -- 2 --

Overloads:



1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
# File 'array.c', line 1772

static VALUE
rb_ary_each_index(VALUE ary)
{
    long i;
    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);

    for (i=0; i<RARRAY_LEN(ary); i++) {
	rb_yield(LONG2NUM(i));
    }
    return ary;
}

- (Boolean) empty?

Returns true if self contains no elements.

[].empty?   #=> true

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1841
1842
1843
1844
1845
1846
1847
# File 'array.c', line 1841

static VALUE
rb_ary_empty_p(VALUE ary)
{
    if (RARRAY_LEN(ary) == 0)
	return Qtrue;
    return Qfalse;
}

- (Boolean) eql?(other)

Returns true if self and other are the same object, or are both arrays with the same content (according to Object#eql?).

Returns:

  • (Boolean)

Returns:

  • (Boolean)


3685
3686
3687
3688
3689
3690
3691
3692
3693
# File 'array.c', line 3685

static VALUE
rb_ary_eql(VALUE ary1, VALUE ary2)
{
    if (ary1 == ary2) return Qtrue;
    if (!RB_TYPE_P(ary2, T_ARRAY)) return Qfalse;
    if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
    if (RARRAY_RAWPTR(ary1) == RARRAY_RAWPTR(ary2)) return Qtrue;
    return rb_exec_recursive_paired(recursive_eql, ary1, ary2, ary2);
}

- (Object) fetch(index) - (Object) fetch(index, default) - (Object) fetch(index) {|index| ... }

Tries to return the element at position index, but throws an IndexError exception if the referenced index lies outside of the array bounds. This error can be prevented by supplying a second argument, which will act as a default value.

Alternatively, if a block is given it will only be executed when an invalid index is referenced. Negative values of index count from the end of the array.

a = [ 11, 22, 33, 44 ]
a.fetch(1)               #=> 22
a.fetch(-1)              #=> 44
a.fetch(4, 'cat')        #=> "cat"
a.fetch(100) { |i| puts "#{i} is out of bounds" }
                         #=> "100 is out of bounds"

Overloads:



1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
# File 'array.c', line 1357

static VALUE
rb_ary_fetch(int argc, VALUE *argv, VALUE ary)
{
    VALUE pos, ifnone;
    long block_given;
    long idx;

    rb_scan_args(argc, argv, "11", &pos, &ifnone);
    block_given = rb_block_given_p();
    if (block_given && argc == 2) {
	rb_warn("block supersedes default value argument");
    }
    idx = NUM2LONG(pos);

    if (idx < 0) {
	idx +=  RARRAY_LEN(ary);
    }
    if (idx < 0 || RARRAY_LEN(ary) <= idx) {
	if (block_given) return rb_yield(pos);
	if (argc == 1) {
	    rb_raise(rb_eIndexError, "index %ld outside of array bounds: %ld...%ld",
			idx - (idx < 0 ? RARRAY_LEN(ary) : 0), -RARRAY_LEN(ary), RARRAY_LEN(ary));
	}
	return ifnone;
    }
    return RARRAY_AREF(ary, idx);
}

- (Object) fill(obj) - (Object) fill(obj, start[, length]) - (Object) fill(obj, range) - (Object) fill {|index| ... } - (Object) fill(start[, length]) {|index| ... } - (Object) fill(range) {|index| ... }

The first three forms set the selected elements of self (which may be the entire array) to obj.

A start of nil is equivalent to zero.

A length of nil is equivalent to the length of the array.

The last three forms fill the array with the value of the given block, which is passed the absolute index of each element to be filled.

Negative values of start count from the end of the array, where -1 is the last element.

a = [ "a", "b", "c", "d" ]
a.fill("x")              #=> ["x", "x", "x", "x"]
a.fill("z", 2, 2)        #=> ["x", "x", "z", "z"]
a.fill("y", 0..1)        #=> ["y", "y", "z", "z"]
a.fill { |i| i*i }       #=> [0, 1, 4, 9]
a.fill(-2) { |i| i*i*i } #=> [0, 1, 8, 27]

Overloads:

  • - (Object) fill {|index| ... }

    Yields:

    • (index)
  • - (Object) fill(start[, length]) {|index| ... }

    Yields:

    • (index)
  • - (Object) fill(range) {|index| ... }

    Yields:

    • (index)


3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
# File 'array.c', line 3344

static VALUE
rb_ary_fill(int argc, VALUE *argv, VALUE ary)
{
    VALUE item, arg1, arg2;
    long beg = 0, end = 0, len = 0;
    int block_p = FALSE;

    if (rb_block_given_p()) {
	block_p = TRUE;
	rb_scan_args(argc, argv, "02", &arg1, &arg2);
	argc += 1;		/* hackish */
    }
    else {
	rb_scan_args(argc, argv, "12", &item, &arg1, &arg2);
    }
    switch (argc) {
      case 1:
	beg = 0;
	len = RARRAY_LEN(ary);
	break;
      case 2:
	if (rb_range_beg_len(arg1, &beg, &len, RARRAY_LEN(ary), 1)) {
	    break;
	}
	/* fall through */
      case 3:
	beg = NIL_P(arg1) ? 0 : NUM2LONG(arg1);
	if (beg < 0) {
	    beg = RARRAY_LEN(ary) + beg;
	    if (beg < 0) beg = 0;
	}
	len = NIL_P(arg2) ? RARRAY_LEN(ary) - beg : NUM2LONG(arg2);
	break;
    }
    rb_ary_modify(ary);
    if (len < 0) {
        return ary;
    }
    if (beg >= ARY_MAX_SIZE || len > ARY_MAX_SIZE - beg) {
	rb_raise(rb_eArgError, "argument too big");
    }
    end = beg + len;
    if (RARRAY_LEN(ary) < end) {
	if (end >= ARY_CAPA(ary)) {
	    ary_resize_capa(ary, end);
	}
	ary_mem_clear(ary, RARRAY_LEN(ary), end - RARRAY_LEN(ary));
	ARY_SET_LEN(ary, end);
    }

    if (block_p) {
	VALUE v;
	long i;

	for (i=beg; i<end; i++) {
	    v = rb_yield(LONG2NUM(i));
	    if (i>=RARRAY_LEN(ary)) break;
	    RARRAY_ASET(ary, i, v);
	}
    }
    else {
	ary_memfill(ary, beg, len, item);
    }
    return ary;
}

- (Integer?) find_index(obj) - (Integer?) find_index {|item| ... } - (Enumerator) find_index - (Integer?) index(obj) - (Integer?) index {|item| ... } - (Enumerator) index

Returns the index of the first object in ary such that the object is == to obj.

If a block is given instead of an argument, returns the index of the first object for which the block returns true. Returns nil if no match is found.

See also Array#rindex.

An Enumerator is returned if neither a block nor argument is given.

a = [ "a", "b", "c" ]
a.index("b")              #=> 1
a.index("z")              #=> nil
a.index { |x| x == "b" }  #=> 1

Overloads:



1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
# File 'array.c', line 1411

static VALUE
rb_ary_index(int argc, VALUE *argv, VALUE ary)
{
    VALUE val;
    long i;

    if (argc == 0) {
	RETURN_ENUMERATOR(ary, 0, 0);
	for (i=0; i<RARRAY_LEN(ary); i++) {
	    if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) {
		return LONG2NUM(i);
	    }
	}
	return Qnil;
    }
    rb_scan_args(argc, argv, "1", &val);
    if (rb_block_given_p())
	rb_warn("given block not used");
    for (i=0; i<RARRAY_LEN(ary); i++) {
	if (rb_equal(RARRAY_AREF(ary, i), val))
	    return LONG2NUM(i);
    }
    return Qnil;
}

- (Object?) first - (Object) first(n)

Returns the first element, or the first n elements, of the array. If the array is empty, the first form returns nil, and the second form returns an empty array. See also Array#last for the opposite effect.

a = [ "q", "r", "s", "t" ]
a.first     #=> "q"
a.first(2)  #=> ["q", "r"]

Overloads:



1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
# File 'array.c', line 1295

static VALUE
rb_ary_first(int argc, VALUE *argv, VALUE ary)
{
    if (argc == 0) {
	if (RARRAY_LEN(ary) == 0) return Qnil;
	return RARRAY_AREF(ary, 0);
    }
    else {
	return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST);
    }
}

- (Object) flatten - (Object) flatten(level)

Returns a new array that is a one-dimensional flattening of self (recursively).

That is, for every element that is an array, extract its elements into the new array.

The optional level argument determines the level of recursion to flatten.

s = [ 1, 2, 3 ]           #=> [1, 2, 3]
t = [ 4, 5, 6, [7, 8] ]   #=> [4, 5, 6, [7, 8]]
a = [ s, t, 9, 10 ]       #=> [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10]
a.flatten                 #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
a = [ 1, 2, [3, [4, 5] ] ]
a.flatten(1)              #=> [1, 2, 3, [4, 5]]


4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
# File 'array.c', line 4343

static VALUE
rb_ary_flatten(int argc, VALUE *argv, VALUE ary)
{
    int mod = 0, level = -1;
    VALUE result, lv;

    rb_scan_args(argc, argv, "01", &lv);
    if (!NIL_P(lv)) level = NUM2INT(lv);
    if (level == 0) return ary_make_shared_copy(ary);

    result = flatten(ary, level, &mod);
    OBJ_INFECT(result, ary);

    return result;
}

- (nil) flatten! - (nil) flatten!(level)

Flattens self in place.

Returns nil if no modifications were made (i.e., the array contains no subarrays.)

The optional level argument determines the level of recursion to flatten.

a = [ 1, 2, [3, [4, 5] ] ]
a.flatten!   #=> [1, 2, 3, 4, 5]
a.flatten!   #=> nil
a            #=> [1, 2, 3, 4, 5]
a = [ 1, 2, [3, [4, 5] ] ]
a.flatten!(1) #=> [1, 2, 3, [4, 5]]

Overloads:

  • - (nil) flatten!

    Returns:

    • (nil)
  • - (nil) flatten!(level)

    Returns:

    • (nil)


4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
# File 'array.c', line 4298

static VALUE
rb_ary_flatten_bang(int argc, VALUE *argv, VALUE ary)
{
    int mod = 0, level = -1;
    VALUE result, lv;

    rb_scan_args(argc, argv, "01", &lv);
    rb_ary_modify_check(ary);
    if (!NIL_P(lv)) level = NUM2INT(lv);
    if (level == 0) return Qnil;

    result = flatten(ary, level, &mod);
    if (mod == 0) {
	ary_discard(result);
	return Qnil;
    }
    if (!(mod = ARY_EMBED_P(result))) rb_obj_freeze(result);
    rb_ary_replace(ary, result);
    if (mod) ARY_SET_EMBED_LEN(result, 0);

    return ary;
}

- (Boolean) frozen?

Return true if this array is frozen (or temporarily frozen while being sorted). See also Object#frozen?

Returns:

  • (Boolean)

Returns:

  • (Boolean)


400
401
402
403
404
405
# File 'array.c', line 400

static VALUE
rb_ary_frozen_p(VALUE ary)
{
    if (OBJ_FROZEN(ary)) return Qtrue;
    return Qfalse;
}

- (Fixnum) hash

Compute a hash-code for this array.

Two arrays with the same content will have the same hash code (and will compare using #eql?).

Returns:



3726
3727
3728
3729
3730
# File 'array.c', line 3726

static VALUE
rb_ary_hash(VALUE ary)
{
    return rb_exec_recursive_outer(recursive_hash, ary, 0);
}

- (Boolean) include?(object)

Returns true if the given object is present in self (that is, if any element == object), otherwise returns false.

a = [ "a", "b", "c" ]
a.include?("b")   #=> true
a.include?("z")   #=> false

Returns:

  • (Boolean)

Returns:

  • (Boolean)


3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
# File 'array.c', line 3744

VALUE
rb_ary_includes(VALUE ary, VALUE item)
{
    long i;

    for (i=0; i<RARRAY_LEN(ary); i++) {
	if (rb_equal(RARRAY_AREF(ary, i), item)) {
	    return Qtrue;
	}
    }
    return Qfalse;
}

- (Integer?) find_index(obj) - (Integer?) find_index {|item| ... } - (Enumerator) find_index - (Integer?) index(obj) - (Integer?) index {|item| ... } - (Enumerator) index

Returns the index of the first object in ary such that the object is == to obj.

If a block is given instead of an argument, returns the index of the first object for which the block returns true. Returns nil if no match is found.

See also Array#rindex.

An Enumerator is returned if neither a block nor argument is given.

a = [ "a", "b", "c" ]
a.index("b")              #=> 1
a.index("z")              #=> nil
a.index { |x| x == "b" }  #=> 1

Overloads:



1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
# File 'array.c', line 1411

static VALUE
rb_ary_index(int argc, VALUE *argv, VALUE ary)
{
    VALUE val;
    long i;

    if (argc == 0) {
	RETURN_ENUMERATOR(ary, 0, 0);
	for (i=0; i<RARRAY_LEN(ary); i++) {
	    if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) {
		return LONG2NUM(i);
	    }
	}
	return Qnil;
    }
    rb_scan_args(argc, argv, "1", &val);
    if (rb_block_given_p())
	rb_warn("given block not used");
    for (i=0; i<RARRAY_LEN(ary); i++) {
	if (rb_equal(RARRAY_AREF(ary, i), val))
	    return LONG2NUM(i);
    }
    return Qnil;
}

- (Object) replace(other_ary) - (Object) initialize_copy(other_ary)

Replaces the contents of self with the contents of other_ary, truncating or expanding if necessary.

a = [ "a", "b", "c", "d", "e" ]
a.replace([ "x", "y", "z" ])   #=> ["x", "y", "z"]
a                              #=> ["x", "y", "z"]


3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
# File 'array.c', line 3247

VALUE
rb_ary_replace(VALUE copy, VALUE orig)
{
    rb_ary_modify_check(copy);
    orig = to_ary(orig);
    if (copy == orig) return copy;

    if (RARRAY_LEN(orig) <= RARRAY_EMBED_LEN_MAX) {
        VALUE shared = 0;

        if (ARY_OWNS_HEAP_P(copy)) {
	    RARRAY_PTR_USE(copy, ptr, xfree(ptr));
	}
        else if (ARY_SHARED_P(copy)) {
            shared = ARY_SHARED(copy);
            FL_UNSET_SHARED(copy);
        }
        FL_SET_EMBED(copy);
	ary_memcpy(copy, 0, RARRAY_LEN(orig), RARRAY_RAWPTR(orig));
        if (shared) {
            rb_ary_decrement_share(shared);
        }
        ARY_SET_LEN(copy, RARRAY_LEN(orig));
    }
    else {
        VALUE shared = ary_make_shared(orig);
        if (ARY_OWNS_HEAP_P(copy)) {
	    RARRAY_PTR_USE(copy, ptr, xfree(ptr));
        }
        else {
            rb_ary_unshare_safe(copy);
        }
        FL_UNSET_EMBED(copy);
        ARY_SET_PTR(copy, RARRAY_RAWPTR(orig));
        ARY_SET_LEN(copy, RARRAY_LEN(orig));
        rb_ary_set_shared(copy, shared);
    }
    return copy;
}

- (Object) insert(index, obj...)

Inserts the given values before the element with the given index.

Negative indices count backwards from the end of the array, where -1 is the last element.

a = %w{ a b c d }
a.insert(2, 99)         #=> ["a", "b", 99, "c", "d"]
a.insert(-2, 1, 2, 3)   #=> ["a", "b", 99, "c", 1, 2, 3, "d"]


1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
# File 'array.c', line 1695

static VALUE
rb_ary_insert(int argc, VALUE *argv, VALUE ary)
{
    long pos;

    rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
    rb_ary_modify_check(ary);
    if (argc == 1) return ary;
    pos = NUM2LONG(argv[0]);
    if (pos == -1) {
	pos = RARRAY_LEN(ary);
    }
    if (pos < 0) {
	pos++;
    }
    rb_ary_splice(ary, pos, 0, rb_ary_new4(argc - 1, argv + 1));
    return ary;
}

- (String) inspect - (String) to_s Also known as: to_s

Creates a string representation of self.

[ "a", "b", "c" ].to_s     #=> "[\"a\", \"b\", \"c\"]"

Overloads:



2050
2051
2052
2053
2054
2055
# File 'array.c', line 2050

static VALUE
rb_ary_inspect(VALUE ary)
{
    if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new2("[]");
    return rb_exec_recursive(inspect_ary, ary, 0);
}

- (String) join(separator = $,)

Returns a string created by converting each element of the array to a string, separated by the given separator. If the separator is nil, it uses current $,. If both the separator and $, are nil, it uses empty string.

[ "a", "b", "c" ].join        #=> "abc"
[ "a", "b", "c" ].join("-")   #=> "a-b-c"

Returns:



2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
# File 'array.c', line 2008

static VALUE
rb_ary_join_m(int argc, VALUE *argv, VALUE ary)
{
    VALUE sep;

    rb_scan_args(argc, argv, "01", &sep);
    if (NIL_P(sep)) sep = rb_output_fs;

    return rb_ary_join(ary, sep);
}

- (Object) keep_if {|item| ... } - (Enumerator) keep_if

Deletes every element of self for which the given block evaluates to false.

See also Array#select!

If no block is given, an Enumerator is returned instead.

a = %w{ a b c d e f }
a.keep_if { |v| v =~ /[aeiou]/ }  #=> ["a", "e"]

Overloads:



2781
2782
2783
2784
2785
2786
2787
# File 'array.c', line 2781

static VALUE
rb_ary_keep_if(VALUE ary)
{
    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    rb_ary_select_bang(ary);
    return ary;
}

- (Object?) last - (Object) last(n)

Returns the last element(s) of self. If the array is empty, the first form returns nil.

See also Array#first for the opposite effect.

a = [ "w", "x", "y", "z" ]
a.last     #=> "z"
a.last(2)  #=> ["y", "z"]

Overloads:



1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
# File 'array.c', line 1322

VALUE
rb_ary_last(int argc, VALUE *argv, VALUE ary)
{
    if (argc == 0) {
	if (RARRAY_LEN(ary) == 0) return Qnil;
	return RARRAY_AREF(ary, RARRAY_LEN(ary)-1);
    }
    else {
	return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST);
    }
}

- (Integer) length Also known as: size

Returns the number of elements in self. May be zero.

[ 1, 2, 3, 4, 5 ].length   #=> 5
[].length                  #=> 0

Returns:



1825
1826
1827
1828
1829
1830
# File 'array.c', line 1825

static VALUE
rb_ary_length(VALUE ary)
{
    long len = RARRAY_LEN(ary);
    return LONG2NUM(len);
}

- (Object) collect {|item| ... } - (Object) map {|item| ... } - (Enumerator) collect - (Enumerator) map

Invokes the given block once for each element of self.

Creates a new array containing the values returned by the block.

See also Enumerable#collect.

If no block is given, an Enumerator is returned instead.

a = [ "a", "b", "c", "d" ]
a.map { |x| x + "!" }   #=> ["a!", "b!", "c!", "d!"]
a                       #=> ["a", "b", "c", "d"]

Overloads:



2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
# File 'array.c', line 2595

static VALUE
rb_ary_collect(VALUE ary)
{
    long i;
    VALUE collect;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    collect = rb_ary_new2(RARRAY_LEN(ary));
    for (i = 0; i < RARRAY_LEN(ary); i++) {
	rb_ary_push(collect, rb_yield(RARRAY_AREF(ary, i)));
    }
    return collect;
}

- (Object) collect! {|item| ... } - (Object) map! {|item| ... } - (Enumerator) collect! - (Enumerator) map!

Invokes the given block once for each element of self, replacing the element with the value returned by the block.

See also Enumerable#collect.

If no block is given, an Enumerator is returned instead.

a = [ "a", "b", "c", "d" ]
a.map! {|x| x + "!" }
a #=>  [ "a!", "b!", "c!", "d!" ]

Overloads:



2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
# File 'array.c', line 2629

static VALUE
rb_ary_collect_bang(VALUE ary)
{
    long i;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    rb_ary_modify(ary);
    for (i = 0; i < RARRAY_LEN(ary); i++) {
	rb_ary_store(ary, i, rb_yield(RARRAY_AREF(ary, i)));
    }
    return ary;
}

- (Object) pack

Packs the contents of arr into a binary sequence according to the directives in aTemplateString (see the table below) Directives "A," "a," and "Z" may be followed by a count, which gives the width of the resulting field. The remaining directives also may take a count, indicating the number of array elements to convert. If the count is an asterisk ("*"), all remaining array elements will be converted. Any of the directives "sSiIlL" may be followed by an underscore ("_") or exclamation mark ("!") to use the underlying platform's native size for the specified type; otherwise, they use a platform-independent size. Spaces are ignored in the template string. See also String#unpack.

a = [ "a", "b", "c" ]
n = [ 65, 66, 67 ]
a.pack("A3A3A3")   #=> "a  b  c  "
a.pack("a3a3a3")   #=> "a\000\000b\000\000c\000\000"
n.pack("ccc")      #=> "ABC"

Directives for pack.

Integer      | Array   |
Directive    | Element | Meaning
---------------------------------------------------------------------------
   C         | Integer | 8-bit unsigned (unsigned char)
   S         | Integer | 16-bit unsigned, native endian (uint16_t)
   L         | Integer | 32-bit unsigned, native endian (uint32_t)
   Q         | Integer | 64-bit unsigned, native endian (uint64_t)
             |         |
   c         | Integer | 8-bit signed (signed char)
   s         | Integer | 16-bit signed, native endian (int16_t)
   l         | Integer | 32-bit signed, native endian (int32_t)
   q         | Integer | 64-bit signed, native endian (int64_t)
             |         |
   S_, S!    | Integer | unsigned short, native endian
   I, I_, I! | Integer | unsigned int, native endian
   L_, L!    | Integer | unsigned long, native endian
   Q_, Q!    | Integer | unsigned long long, native endian (ArgumentError
             |         | if the platform has no long long type.)
             |         | (Q_ and Q! is available since Ruby 2.1.)
             |         |
   s_, s!    | Integer | signed short, native endian
   i, i_, i! | Integer | signed int, native endian
   l_, l!    | Integer | signed long, native endian
   q_, q!    | Integer | signed long long, native endian (ArgumentError
             |         | if the platform has no long long type.)
             |         | (q_ and q! is available since Ruby 2.1.)
             |         |
   S> L> Q>  | Integer | same as the directives without ">" except
   s> l> q>  |         | big endian
   S!> I!>   |         | (available since Ruby 1.9.3)
   L!> Q!>   |         | "S>" is same as "n"
   s!> i!>   |         | "L>" is same as "N"
   l!> q!>   |         |
             |         |
   S< L< Q<  | Integer | same as the directives without "<" except
   s< l< q<  |         | little endian
   S!< I!<   |         | (available since Ruby 1.9.3)
   L!< Q!<   |         | "S<" is same as "v"
   s!< i!<   |         | "L<" is same as "V"
   l!< q!<   |         |
             |         |
   n         | Integer | 16-bit unsigned, network (big-endian) byte order
   N         | Integer | 32-bit unsigned, network (big-endian) byte order
   v         | Integer | 16-bit unsigned, VAX (little-endian) byte order
   V         | Integer | 32-bit unsigned, VAX (little-endian) byte order
             |         |
   U         | Integer | UTF-8 character
   w         | Integer | BER-compressed integer

Float        |         |
Directive    |         | Meaning
---------------------------------------------------------------------------
   D, d      | Float   | double-precision, native format
   F, f      | Float   | single-precision, native format
   E         | Float   | double-precision, little-endian byte order
   e         | Float   | single-precision, little-endian byte order
   G         | Float   | double-precision, network (big-endian) byte order
   g         | Float   | single-precision, network (big-endian) byte order

String       |         |
Directive    |         | Meaning
---------------------------------------------------------------------------
   A         | String  | arbitrary binary string (space padded, count is width)
   a         | String  | arbitrary binary string (null padded, count is width)
   Z         | String  | same as ``a'', except that null is added with *
   B         | String  | bit string (MSB first)
   b         | String  | bit string (LSB first)
   H         | String  | hex string (high nibble first)
   h         | String  | hex string (low nibble first)
   u         | String  | UU-encoded string
   M         | String  | quoted printable, MIME encoding (see RFC2045)
   m         | String  | base64 encoded string (see RFC 2045, count is width)
             |         | (if count is 0, no line feed are added, see RFC 4648)
   P         | String  | pointer to a structure (fixed-length string)
   p         | String  | pointer to a null-terminated string

Misc.        |         |
Directive    |         | Meaning
---------------------------------------------------------------------------
   @         | ---     | moves to absolute position
   X         | ---     | back up a byte
   x         | ---     | null byte


347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
# File 'pack.c', line 347

static VALUE
pack_pack(VALUE ary, VALUE fmt)
{
    static const char nul10[] = "\0\0\0\0\0\0\0\0\0\0";
    static const char spc10[] = "          ";
    const char *p, *pend;
    VALUE res, from, associates = 0;
    char type;
    long items, len, idx, plen;
    const char *ptr;
    int enc_info = 1;		/* 0 - BINARY, 1 - US-ASCII, 2 - UTF-8 */
#ifdef NATINT_PACK
    int natint;		/* native integer */
#endif
    int integer_size, bigendian_p;

    StringValue(fmt);
    p = RSTRING_PTR(fmt);
    pend = p + RSTRING_LEN(fmt);
    res = rb_str_buf_new(0);

    items = RARRAY_LEN(ary);
    idx = 0;

#define TOO_FEW (rb_raise(rb_eArgError, toofew), 0)
#define THISFROM (items > 0 ? RARRAY_AREF(ary, idx) : TOO_FEW)
#define NEXTFROM (items-- > 0 ? RARRAY_AREF(ary, idx++) : TOO_FEW)

    while (p < pend) {
	int explicit_endian = 0;
	if (RSTRING_PTR(fmt) + RSTRING_LEN(fmt) != pend) {
	    rb_raise(rb_eRuntimeError, "format string modified");
	}
	type = *p++;		/* get data type */
#ifdef NATINT_PACK
	natint = 0;
#endif

	if (ISSPACE(type)) continue;
	if (type == '#') {
	    while ((p < pend) && (*p != '\n')) {
		p++;
	    }
	    continue;
	}

	{
          modifiers:
	    switch (*p) {
	      case '_':
	      case '!':
		if (strchr(natstr, type)) {
#ifdef NATINT_PACK
		    natint = 1;
#endif
		    p++;
		}
		else {
		    rb_raise(rb_eArgError, "'%c' allowed only after types %s", *p, natstr);
		}
		goto modifiers;

	      case '<':
	      case '>':
		if (!strchr(endstr, type)) {
		    rb_raise(rb_eArgError, "'%c' allowed only after types %s", *p, endstr);
		}
		if (explicit_endian) {
		    rb_raise(rb_eRangeError, "Can't use both '<' and '>'");
		}
		explicit_endian = *p++;
		goto modifiers;
	    }
	}

	if (*p == '*') {	/* set data length */
	    len = strchr("@Xxu", type) ? 0
                : strchr("PMm", type) ? 1
                : items;
	    p++;
	}
	else if (ISDIGIT(*p)) {
	    errno = 0;
	    len = STRTOUL(p, (char**)&p, 10);
	    if (errno) {
		rb_raise(rb_eRangeError, "pack length too big");
	    }
	}
	else {
	    len = 1;
	}

	switch (type) {
	  case 'U':
	    /* if encoding is US-ASCII, upgrade to UTF-8 */
	    if (enc_info == 1) enc_info = 2;
	    break;
	  case 'm': case 'M': case 'u':
	    /* keep US-ASCII (do nothing) */
	    break;
	  default:
	    /* fall back to BINARY */
	    enc_info = 0;
	    break;
	}
	switch (type) {
	  case 'A': case 'a': case 'Z':
	  case 'B': case 'b':
	  case 'H': case 'h':
	    from = NEXTFROM;
	    if (NIL_P(from)) {
		ptr = "";
		plen = 0;
	    }
	    else {
		StringValue(from);
		ptr = RSTRING_PTR(from);
		plen = RSTRING_LEN(from);
		OBJ_INFECT(res, from);
	    }

	    if (p[-1] == '*')
		len = plen;

	    switch (type) {
	      case 'a':		/* arbitrary binary string (null padded)  */
	      case 'A':         /* arbitrary binary string (ASCII space padded) */
	      case 'Z':         /* null terminated string  */
		if (plen >= len) {
		    rb_str_buf_cat(res, ptr, len);
		    if (p[-1] == '*' && type == 'Z')
			rb_str_buf_cat(res, nul10, 1);
		}
		else {
		    rb_str_buf_cat(res, ptr, plen);
		    len -= plen;
		    while (len >= 10) {
			rb_str_buf_cat(res, (type == 'A')?spc10:nul10, 10);
			len -= 10;
		    }
		    rb_str_buf_cat(res, (type == 'A')?spc10:nul10, len);
		}
		break;

#define castchar(from) (char)((from) & 0xff)

	      case 'b':		/* bit string (ascending) */
		{
		    int byte = 0;
		    long i, j = 0;

		    if (len > plen) {
			j = (len - plen + 1)/2;
			len = plen;
		    }
		    for (i=0; i++ < len; ptr++) {
			if (*ptr & 1)
			    byte |= 128;
			if (i & 7)
			    byte >>= 1;
			else {
			    char c = castchar(byte);
			    rb_str_buf_cat(res, &c, 1);
			    byte = 0;
			}
		    }
		    if (len & 7) {
			char c;
			byte >>= 7 - (len & 7);
			c = castchar(byte);
			rb_str_buf_cat(res, &c, 1);
		    }
		    len = j;
		    goto grow;
		}
		break;

	      case 'B':		/* bit string (descending) */
		{
		    int byte = 0;
		    long i, j = 0;

		    if (len > plen) {
			j = (len - plen + 1)/2;
			len = plen;
		    }
		    for (i=0; i++ < len; ptr++) {
			byte |= *ptr & 1;
			if (i & 7)
			    byte <<= 1;
			else {
			    char c = castchar(byte);
			    rb_str_buf_cat(res, &c, 1);
			    byte = 0;
			}
		    }
		    if (len & 7) {
			char c;
			byte <<= 7 - (len & 7);
			c = castchar(byte);
			rb_str_buf_cat(res, &c, 1);
		    }
		    len = j;
		    goto grow;
		}
		break;

	      case 'h':		/* hex string (low nibble first) */
		{
		    int byte = 0;
		    long i, j = 0;

		    if (len > plen) {
			j = (len + 1) / 2 - (plen + 1) / 2;
			len = plen;
		    }
		    for (i=0; i++ < len; ptr++) {
			if (ISALPHA(*ptr))
			    byte |= (((*ptr & 15) + 9) & 15) << 4;
			else
			    byte |= (*ptr & 15) << 4;
			if (i & 1)
			    byte >>= 4;
			else {
			    char c = castchar(byte);
			    rb_str_buf_cat(res, &c, 1);
			    byte = 0;
			}
		    }
		    if (len & 1) {
			char c = castchar(byte);
			rb_str_buf_cat(res, &c, 1);
		    }
		    len = j;
		    goto grow;
		}
		break;

	      case 'H':		/* hex string (high nibble first) */
		{
		    int byte = 0;
		    long i, j = 0;

		    if (len > plen) {
			j = (len + 1) / 2 - (plen + 1) / 2;
			len = plen;
		    }
		    for (i=0; i++ < len; ptr++) {
			if (ISALPHA(*ptr))
			    byte |= ((*ptr & 15) + 9) & 15;
			else
			    byte |= *ptr & 15;
			if (i & 1)
			    byte <<= 4;
			else {
			    char c = castchar(byte);
			    rb_str_buf_cat(res, &c, 1);
			    byte = 0;
			}
		    }
		    if (len & 1) {
			char c = castchar(byte);
			rb_str_buf_cat(res, &c, 1);
		    }
		    len = j;
		    goto grow;
		}
		break;
	    }
	    break;

	  case 'c':		/* signed char */
	  case 'C':		/* unsigned char */
            integer_size = 1;
            bigendian_p = BIGENDIAN_P(); /* not effective */
            goto pack_integer;

	  case 's':		/* s for int16_t, s! for signed short */
            integer_size = NATINT_LEN(short, 2);
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

	  case 'S':		/* S for uint16_t, S! for unsigned short */
            integer_size = NATINT_LEN(short, 2);
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

	  case 'i':		/* i and i! for signed int */
            integer_size = (int)sizeof(int);
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

	  case 'I':		/* I and I! for unsigned int */
            integer_size = (int)sizeof(int);
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

	  case 'l':		/* l for int32_t, l! for signed long */
            integer_size = NATINT_LEN(long, 4);
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

	  case 'L':		/* L for uint32_t, L! for unsigned long */
            integer_size = NATINT_LEN(long, 4);
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

	  case 'q':		/* q for int64_t, q! for signed long long */
	    integer_size = NATINT_LEN_Q;
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

	  case 'Q':		/* Q for uint64_t, Q! for unsigned long long */
	    integer_size = NATINT_LEN_Q;
            bigendian_p = BIGENDIAN_P();
            goto pack_integer;

	  case 'n':		/* 16 bit (2 bytes) integer (network byte-order)  */
            integer_size = 2;
            bigendian_p = 1;
            goto pack_integer;

	  case 'N':		/* 32 bit (4 bytes) integer (network byte-order) */
            integer_size = 4;
            bigendian_p = 1;
            goto pack_integer;

	  case 'v':		/* 16 bit (2 bytes) integer (VAX byte-order) */
            integer_size = 2;
            bigendian_p = 0;
            goto pack_integer;

	  case 'V':		/* 32 bit (4 bytes) integer (VAX byte-order) */
            integer_size = 4;
            bigendian_p = 0;
            goto pack_integer;

          pack_integer:
	    if (explicit_endian) {
		bigendian_p = explicit_endian == '>';
	    }
            if (integer_size > MAX_INTEGER_PACK_SIZE)
                rb_bug("unexpected intger size for pack: %d", integer_size);
            while (len-- > 0) {
                char intbuf[MAX_INTEGER_PACK_SIZE];

                from = NEXTFROM;
                rb_integer_pack(from, intbuf, integer_size, 1, 0,
                    INTEGER_PACK_2COMP |
                    (bigendian_p ? INTEGER_PACK_BIG_ENDIAN : INTEGER_PACK_LITTLE_ENDIAN));
                rb_str_buf_cat(res, intbuf, integer_size);
            }
	    break;

	  case 'f':		/* single precision float in native format */
	  case 'F':		/* ditto */
	    while (len-- > 0) {
		float f;

		from = NEXTFROM;
		f = (float)RFLOAT_VALUE(rb_to_float(from));
		rb_str_buf_cat(res, (char*)&f, sizeof(float));
	    }
	    break;

	  case 'e':		/* single precision float in VAX byte-order */
	    while (len-- > 0) {
		float f;
		FLOAT_CONVWITH(ftmp);

		from = NEXTFROM;
		f = (float)RFLOAT_VALUE(rb_to_float(from));
		f = HTOVF(f,ftmp);
		rb_str_buf_cat(res, (char*)&f, sizeof(float));
	    }
	    break;

	  case 'E':		/* double precision float in VAX byte-order */
	    while (len-- > 0) {
		double d;
		DOUBLE_CONVWITH(dtmp);

		from = NEXTFROM;
		d = RFLOAT_VALUE(rb_to_float(from));
		d = HTOVD(d,dtmp);
		rb_str_buf_cat(res, (char*)&d, sizeof(double));
	    }
	    break;

	  case 'd':		/* double precision float in native format */
	  case 'D':		/* ditto */
	    while (len-- > 0) {
		double d;

		from = NEXTFROM;
		d = RFLOAT_VALUE(rb_to_float(from));
		rb_str_buf_cat(res, (char*)&d, sizeof(double));
	    }
	    break;

	  case 'g':		/* single precision float in network byte-order */
	    while (len-- > 0) {
		float f;
		FLOAT_CONVWITH(ftmp);

		from = NEXTFROM;
		f = (float)RFLOAT_VALUE(rb_to_float(from));
		f = HTONF(f,ftmp);
		rb_str_buf_cat(res, (char*)&f, sizeof(float));
	    }
	    break;

	  case 'G':		/* double precision float in network byte-order */
	    while (len-- > 0) {
		double d;
		DOUBLE_CONVWITH(dtmp);

		from = NEXTFROM;
		d = RFLOAT_VALUE(rb_to_float(from));
		d = HTOND(d,dtmp);
		rb_str_buf_cat(res, (char*)&d, sizeof(double));
	    }
	    break;

	  case 'x':		/* null byte */
	  grow:
	    while (len >= 10) {
		rb_str_buf_cat(res, nul10, 10);
		len -= 10;
	    }
	    rb_str_buf_cat(res, nul10, len);
	    break;

	  case 'X':		/* back up byte */
	  shrink:
	    plen = RSTRING_LEN(res);
	    if (plen < len)
		rb_raise(rb_eArgError, "X outside of string");
	    rb_str_set_len(res, plen - len);
	    break;

	  case '@':		/* null fill to absolute position */
	    len -= RSTRING_LEN(res);
	    if (len > 0) goto grow;
	    len = -len;
	    if (len > 0) goto shrink;
	    break;

	  case '%':
	    rb_raise(rb_eArgError, "%% is not supported");
	    break;

	  case 'U':		/* Unicode character */
	    while (len-- > 0) {
		SIGNED_VALUE l;
		char buf[8];
		int le;

		from = NEXTFROM;
		from = rb_to_int(from);
		l = NUM2LONG(from);
		if (l < 0) {
		    rb_raise(rb_eRangeError, "pack(U): value out of range");
		}
		le = rb_uv_to_utf8(buf, l);
		rb_str_buf_cat(res, (char*)buf, le);
	    }
	    break;

	  case 'u':		/* uuencoded string */
	  case 'm':		/* base64 encoded string */
	    from = NEXTFROM;
	    StringValue(from);
	    ptr = RSTRING_PTR(from);
	    plen = RSTRING_LEN(from);

	    if (len == 0 && type == 'm') {
		encodes(res, ptr, plen, type, 0);
		ptr += plen;
		break;
	    }
	    if (len <= 2)
		len = 45;
	    else if (len > 63 && type == 'u')
		len = 63;
	    else
		len = len / 3 * 3;
	    while (plen > 0) {
		long todo;

		if (plen > len)
		    todo = len;
		else
		    todo = plen;
		encodes(res, ptr, todo, type, 1);
		plen -= todo;
		ptr += todo;
	    }
	    break;

	  case 'M':		/* quoted-printable encoded string */
	    from = rb_obj_as_string(NEXTFROM);
	    if (len <= 1)
		len = 72;
	    qpencode(res, from, len);
	    break;

	  case 'P':		/* pointer to packed byte string */
	    from = THISFROM;
	    if (!NIL_P(from)) {
		StringValue(from);
		if (RSTRING_LEN(from) < len) {
		    rb_raise(rb_eArgError, "too short buffer for P(%ld for %ld)",
			     RSTRING_LEN(from), len);
		}
	    }
	    len = 1;
	    /* FALL THROUGH */
	  case 'p':		/* pointer to string */
	    while (len-- > 0) {
		char *t;
		from = NEXTFROM;
		if (NIL_P(from)) {
		    t = 0;
		}
		else {
		    t = StringValuePtr(from);
		}
		if (!associates) {
		    associates = rb_ary_new();
		}
		rb_ary_push(associates, from);
		rb_obj_taint(from);
		rb_str_buf_cat(res, (char*)&t, sizeof(char*));
	    }
	    break;

	  case 'w':		/* BER compressed integer  */
	    while (len-- > 0) {
		VALUE buf = rb_str_new(0, 0);
                size_t numbytes;
                int sign;
                char *cp;

		from = NEXTFROM;
                from = rb_to_int(from);
                numbytes = rb_absint_numwords(from, 7, NULL);
                if (numbytes == 0)
                    numbytes = 1;
                buf = rb_str_new(NULL, numbytes);

                sign = rb_integer_pack(from, RSTRING_PTR(buf), RSTRING_LEN(buf), 1, 1, INTEGER_PACK_BIG_ENDIAN);

                if (sign < 0)
                    rb_raise(rb_eArgError, "can't compress negative numbers");
                if (sign == 2)
                    rb_bug("buffer size problem?");

                cp = RSTRING_PTR(buf);
                while (1 < numbytes) {
                  *cp |= 0x80;
                  cp++;
                  numbytes--;
                }

                rb_str_buf_cat(res, RSTRING_PTR(buf), RSTRING_LEN(buf));
	    }
	    break;

	  default:
	    rb_warning("unknown pack directive '%c' in '%s'",
		type, RSTRING_PTR(fmt));
	    break;
	}
    }

    if (associates) {
	rb_str_associate(res, associates);
    }
    OBJ_INFECT(res, fmt);
    switch (enc_info) {
      case 1:
	ENCODING_CODERANGE_SET(res, rb_usascii_encindex(), ENC_CODERANGE_7BIT);
	break;
      case 2:
	rb_enc_set_index(res, rb_utf8_encindex());
	break;
      default:
	/* do nothing, keep ASCII-8BIT */
	break;
    }
    return res;
}

- (Object) permutation {|p| ... } - (Enumerator) permutation - (Object) permutation(n) {|p| ... } - (Enumerator) permutation(n)

When invoked with a block, yield all permutations of length n of the elements of the array, then return the array itself.

If n is not specified, yield all permutations of all elements.

The implementation makes no guarantees about the order in which the permutations are yielded.

If no block is given, an Enumerator is returned instead.

Examples:

a = [1, 2, 3]
a.permutation.to_a    #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
a.permutation(1).to_a #=> [[1],[2],[3]]
a.permutation(2).to_a #=> [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]]
a.permutation(3).to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
a.permutation(0).to_a #=> [[]] # one permutation of length 0
a.permutation(4).to_a #=> []   # no permutations of length 4

Overloads:



4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
# File 'array.c', line 4733

static VALUE
rb_ary_permutation(int argc, VALUE *argv, VALUE ary)
{
    VALUE num;
    long r, n, i;

    n = RARRAY_LEN(ary);                  /* Array length */
    RETURN_SIZED_ENUMERATOR(ary, argc, argv, rb_ary_permutation_size);   /* Return enumerator if no block */
    rb_scan_args(argc, argv, "01", &num);
    r = NIL_P(num) ? n : NUM2LONG(num);   /* Permutation size from argument */

    if (r < 0 || n < r) {
	/* no permutations: yield nothing */
    }
    else if (r == 0) { /* exactly one permutation: the zero-length array */
	rb_yield(rb_ary_new2(0));
    }
    else if (r == 1) { /* this is a special, easy case */
	for (i = 0; i < RARRAY_LEN(ary); i++) {
	    rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
	}
    }
    else {             /* this is the general case */
	volatile VALUE t0 = tmpbuf(n,sizeof(long));
	long *p = (long*)RSTRING_PTR(t0);
	volatile VALUE t1 = tmpbuf(n,sizeof(char));
	char *used = (char*)RSTRING_PTR(t1);
	VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
	RBASIC_CLEAR_CLASS(ary0);

	MEMZERO(used, char, n); /* initialize array */

	permute0(n, r, p, 0, used, ary0); /* compute and yield permutations */
	tmpbuf_discard(t0);
	tmpbuf_discard(t1);
	RBASIC_SET_CLASS_RAW(ary0, rb_cArray);
    }
    return ary;
}

- (Object?) pop - (Object) pop(n)

Removes the last element from self and returns it, or nil if the array is empty.

If a number n is given, returns an array of the last n elements (or less) just like array.slice!(-n, n) does. See also Array#push for the opposite effect.

a = [ "a", "b", "c", "d" ]
a.pop     #=> "d"
a.pop(2)  #=> ["b", "c"]
a         #=> ["a"]

Overloads:



974
975
976
977
978
979
980
981
982
983
984
985
986
987
# File 'array.c', line 974

static VALUE
rb_ary_pop_m(int argc, VALUE *argv, VALUE ary)
{
    VALUE result;

    if (argc == 0) {
	return rb_ary_pop(ary);
    }

    rb_ary_modify_check(ary);
    result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST);
    ARY_INCREASE_LEN(ary, -RARRAY_LEN(result));
    return result;
}

- (Object) product(other_ary, ...) - (Object) product(other_ary, ...) {|p| ... }

Returns an array of all combinations of elements from all arrays.

The length of the returned array is the product of the length of self and the argument arrays.

If given a block, #product will yield all combinations and return self instead.

[1,2,3].product([4,5])     #=> [[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]]
[1,2].product([1,2])       #=> [[1,1],[1,2],[2,1],[2,2]]
[1,2].product([3,4],[5,6]) #=> [[1,3,5],[1,3,6],[1,4,5],[1,4,6],
                           #     [2,3,5],[2,3,6],[2,4,5],[2,4,6]]
[1,2].product()            #=> [[1],[2]]
[1,2].product([])          #=> []

Overloads:

  • - (Object) product(other_ary, ...) {|p| ... }

    Yields:

    • (p)


5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
# File 'array.c', line 5083

static VALUE
rb_ary_product(int argc, VALUE *argv, VALUE ary)
{
    int n = argc+1;    /* How many arrays we're operating on */
    volatile VALUE t0 = tmpary(n);
    volatile VALUE t1 = tmpbuf(n, sizeof(int));
    VALUE *arrays = RARRAY_PTR(t0); /* The arrays we're computing the product of */
    int *counters = (int*)RSTRING_PTR(t1); /* The current position in each one */
    VALUE result = Qnil;      /* The array we'll be returning, when no block given */
    long i,j;
    long resultlen = 1;

    RBASIC_CLEAR_CLASS(t0);
    RBASIC_CLEAR_CLASS(t1);

    /* initialize the arrays of arrays */
    ARY_SET_LEN(t0, n);
    arrays[0] = ary;
    for (i = 1; i < n; i++) arrays[i] = Qnil;
    for (i = 1; i < n; i++) arrays[i] = to_ary(argv[i-1]);

    /* initialize the counters for the arrays */
    for (i = 0; i < n; i++) counters[i] = 0;

    /* Otherwise, allocate and fill in an array of results */
    if (rb_block_given_p()) {
	/* Make defensive copies of arrays; exit if any is empty */
	for (i = 0; i < n; i++) {
	    if (RARRAY_LEN(arrays[i]) == 0) goto done;
	    arrays[i] = ary_make_shared_copy(arrays[i]);
	}
    }
    else {
	/* Compute the length of the result array; return [] if any is empty */
	for (i = 0; i < n; i++) {
	    long k = RARRAY_LEN(arrays[i]);
	    if (k == 0) {
		result = rb_ary_new2(0);
		goto done;
	    }
            if (MUL_OVERFLOW_LONG_P(resultlen, k))
		rb_raise(rb_eRangeError, "too big to product");
	    resultlen *= k;
	}
	result = rb_ary_new2(resultlen);
    }
    for (;;) {
	int m;
	/* fill in one subarray */
	VALUE subarray = rb_ary_new2(n);
	for (j = 0; j < n; j++) {
	    rb_ary_push(subarray, rb_ary_entry(arrays[j], counters[j]));
	}

	/* put it on the result array */
	if (NIL_P(result)) {
	    FL_SET(t0, FL_USER5);
	    rb_yield(subarray);
	    if (! FL_TEST(t0, FL_USER5)) {
		rb_raise(rb_eRuntimeError, "product reentered");
	    }
	    else {
		FL_UNSET(t0, FL_USER5);
	    }
	}
	else {
	    rb_ary_push(result, subarray);
	}

	/*
	 * Increment the last counter.  If it overflows, reset to 0
	 * and increment the one before it.
	 */
	m = n-1;
	counters[m]++;
	while (counters[m] == RARRAY_LEN(arrays[m])) {
	    counters[m] = 0;
	    /* If the first counter overflows, we are done */
	    if (--m < 0) goto done;
	    counters[m]++;
	}
    }
done:
    tmpary_discard(t0);
    tmpbuf_discard(t1);

    return NIL_P(result) ? ary : result;
}

- (Object) push(obj, ...)

Append --- Pushes the given object(s) on to the end of this array. This expression returns the array itself, so several appends may be chained together. See also Array#pop for the opposite effect.

a = [ "a", "b", "c" ]
a.push("d", "e", "f")
        #=> ["a", "b", "c", "d", "e", "f"]
[1, 2, 3,].push(4).push(5)
        #=> [1, 2, 3, 4, 5]


933
934
935
936
937
# File 'array.c', line 933

static VALUE
rb_ary_push_m(int argc, VALUE *argv, VALUE ary)
{
    return rb_ary_cat(ary, argv, argc);
}

- (nil) rassoc(obj)

Searches through the array whose elements are also arrays.

Compares obj with the second element of each contained array using obj.==.

Returns the first contained array that matches obj.

See also Array#assoc.

a = [ [ 1, "one"], [2, "two"], [3, "three"], ["ii", "two"] ]
a.rassoc("two")    #=> [2, "two"]
a.rassoc("four")   #=> nil

Returns:

  • (nil)


3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
# File 'array.c', line 3586

VALUE
rb_ary_rassoc(VALUE ary, VALUE value)
{
    long i;
    VALUE v;

    for (i = 0; i < RARRAY_LEN(ary); ++i) {
	v = RARRAY_AREF(ary, i);
	if (RB_TYPE_P(v, T_ARRAY) &&
	    RARRAY_LEN(v) > 1 &&
	    rb_equal(RARRAY_AREF(v, 1), value))
	    return v;
    }
    return Qnil;
}

- (Object) reject {|item| ... } - (Enumerator) reject

Returns a new array containing the items in self for which the given block is not true.

See also Array#delete_if

If no block is given, an Enumerator is returned instead.

Overloads:



3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
# File 'array.c', line 3060

static VALUE
rb_ary_reject(VALUE ary)
{
    VALUE rejected_ary;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    rejected_ary = rb_ary_new();
    ary_reject(ary, rejected_ary);
    return rejected_ary;
}

- (nil) reject! {|item| ... } - (Enumerator) reject!

Equivalent to Array#delete_if, deleting elements from self for which the block evaluates to true, but returns nil if no changes were made.

The array is changed instantly every time the block is called, not after the iteration is over.

See also Enumerable#reject and Array#delete_if.

If no block is given, an Enumerator is returned instead.

Overloads:

  • - (nil) reject! {|item| ... }

    Yields:

    • (item)

    Returns:

    • (nil)
  • - (Enumerator) reject!

    Returns:



3040
3041
3042
3043
3044
3045
# File 'array.c', line 3040

static VALUE
rb_ary_reject_bang(VALUE ary)
{
    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    return ary_reject_bang(ary);
}

- (Object) repeated_combination(n) {|c| ... } - (Enumerator) repeated_combination(n)

When invoked with a block, yields all repeated combinations of length n of elements from the array and then returns the array itself.

The implementation makes no guarantees about the order in which the repeated combinations are yielded.

If no block is given, an Enumerator is returned instead.

Examples:

a = [1, 2, 3]
a.repeated_combination(1).to_a  #=> [[1], [2], [3]]
a.repeated_combination(2).to_a  #=> [[1,1],[1,2],[1,3],[2,2],[2,3],[3,3]]
a.repeated_combination(3).to_a  #=> [[1,1,1],[1,1,2],[1,1,3],[1,2,2],[1,2,3],
                                #    [1,3,3],[2,2,2],[2,2,3],[2,3,3],[3,3,3]]
a.repeated_combination(4).to_a  #=> [[1,1,1,1],[1,1,1,2],[1,1,1,3],[1,1,2,2],[1,1,2,3],
                                #    [1,1,3,3],[1,2,2,2],[1,2,2,3],[1,2,3,3],[1,3,3,3],
                                #    [2,2,2,2],[2,2,2,3],[2,2,3,3],[2,3,3,3],[3,3,3,3]]
a.repeated_combination(0).to_a  #=> [[]] # one combination of length 0

Overloads:



5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
# File 'array.c', line 5027

static VALUE
rb_ary_repeated_combination(VALUE ary, VALUE num)
{
    long n, i, len;

    n = NUM2LONG(num);                 /* Combination size from argument */
    RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_repeated_combination_size);   /* Return enumerator if no block */
    len = RARRAY_LEN(ary);
    if (n < 0) {
	/* yield nothing */
    }
    else if (n == 0) {
	rb_yield(rb_ary_new2(0));
    }
    else if (n == 1) {
	for (i = 0; i < len; i++) {
	    rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
	}
    }
    else if (len == 0) {
	/* yield nothing */
    }
    else {
	volatile VALUE t0 = tmpbuf(n, sizeof(long));
	long *p = (long*)RSTRING_PTR(t0);
	VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
	RBASIC_CLEAR_CLASS(ary0);

	rcombinate0(len, n, p, 0, n, ary0); /* compute and yield repeated combinations */
	tmpbuf_discard(t0);
	RBASIC_SET_CLASS_RAW(ary0, rb_cArray);
    }
    return ary;
}

- (Object) repeated_permutation(n) {|p| ... } - (Enumerator) repeated_permutation(n)

When invoked with a block, yield all repeated permutations of length n of the elements of the array, then return the array itself.

The implementation makes no guarantees about the order in which the repeated permutations are yielded.

If no block is given, an Enumerator is returned instead.

Examples:

a = [1, 2]
a.repeated_permutation(1).to_a  #=> [[1], [2]]
a.repeated_permutation(2).to_a  #=> [[1,1],[1,2],[2,1],[2,2]]
a.repeated_permutation(3).to_a  #=> [[1,1,1],[1,1,2],[1,2,1],[1,2,2],
                                #    [2,1,1],[2,1,2],[2,2,1],[2,2,2]]
a.repeated_permutation(0).to_a  #=> [[]] # one permutation of length 0

Overloads:



4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
# File 'array.c', line 4932

static VALUE
rb_ary_repeated_permutation(VALUE ary, VALUE num)
{
    long r, n, i;

    n = RARRAY_LEN(ary);                  /* Array length */
    RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_repeated_permutation_size);      /* Return Enumerator if no block */
    r = NUM2LONG(num);                    /* Permutation size from argument */

    if (r < 0) {
	/* no permutations: yield nothing */
    }
    else if (r == 0) { /* exactly one permutation: the zero-length array */
	rb_yield(rb_ary_new2(0));
    }
    else if (r == 1) { /* this is a special, easy case */
	for (i = 0; i < RARRAY_LEN(ary); i++) {
	    rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
	}
    }
    else {             /* this is the general case */
	volatile VALUE t0 = tmpbuf(r, sizeof(long));
	long *p = (long*)RSTRING_PTR(t0);
	VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
	RBASIC_CLEAR_CLASS(ary0);

	rpermute0(n, r, p, 0, ary0); /* compute and yield repeated permutations */
	tmpbuf_discard(t0);
	RBASIC_SET_CLASS_RAW(ary0, rb_cArray);
    }
    return ary;
}

- (Object) replace(other_ary) - (Object) initialize_copy(other_ary)

Replaces the contents of self with the contents of other_ary, truncating or expanding if necessary.

a = [ "a", "b", "c", "d", "e" ]
a.replace([ "x", "y", "z" ])   #=> ["x", "y", "z"]
a                              #=> ["x", "y", "z"]


3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
# File 'array.c', line 3247

VALUE
rb_ary_replace(VALUE copy, VALUE orig)
{
    rb_ary_modify_check(copy);
    orig = to_ary(orig);
    if (copy == orig) return copy;

    if (RARRAY_LEN(orig) <= RARRAY_EMBED_LEN_MAX) {
        VALUE shared = 0;

        if (ARY_OWNS_HEAP_P(copy)) {
	    RARRAY_PTR_USE(copy, ptr, xfree(ptr));
	}
        else if (ARY_SHARED_P(copy)) {
            shared = ARY_SHARED(copy);
            FL_UNSET_SHARED(copy);
        }
        FL_SET_EMBED(copy);
	ary_memcpy(copy, 0, RARRAY_LEN(orig), RARRAY_RAWPTR(orig));
        if (shared) {
            rb_ary_decrement_share(shared);
        }
        ARY_SET_LEN(copy, RARRAY_LEN(orig));
    }
    else {
        VALUE shared = ary_make_shared(orig);
        if (ARY_OWNS_HEAP_P(copy)) {
	    RARRAY_PTR_USE(copy, ptr, xfree(ptr));
        }
        else {
            rb_ary_unshare_safe(copy);
        }
        FL_UNSET_EMBED(copy);
        ARY_SET_PTR(copy, RARRAY_RAWPTR(orig));
        ARY_SET_LEN(copy, RARRAY_LEN(orig));
        rb_ary_set_shared(copy, shared);
    }
    return copy;
}

- (Object) reverse

Returns a new array containing self's elements in reverse order.

[ "a", "b", "c" ].reverse   #=> ["c", "b", "a"]
[ 1 ].reverse               #=> [1]


2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
# File 'array.c', line 2147

static VALUE
rb_ary_reverse_m(VALUE ary)
{
    long len = RARRAY_LEN(ary);
    VALUE dup = rb_ary_new2(len);

    if (len > 0) {
	const VALUE *p1 = RARRAY_RAWPTR(ary);
	VALUE *p2 = (VALUE *)RARRAY_RAWPTR(dup) + len - 1;
	do *p2-- = *p1++; while (--len > 0);
    }
    ARY_SET_LEN(dup, RARRAY_LEN(ary));
    return dup;
}

- (Object) reverse!

Reverses self in place.

a = [ "a", "b", "c" ]
a.reverse!       #=> ["c", "b", "a"]
a                #=> ["c", "b", "a"]


2131
2132
2133
2134
2135
# File 'array.c', line 2131

static VALUE
rb_ary_reverse_bang(VALUE ary)
{
    return rb_ary_reverse(ary);
}

- (Object) reverse_each {|item| ... } - (Enumerator) reverse_each

Same as Array#each, but traverses self in reverse order.

a = [ "a", "b", "c" ]
a.reverse_each {|x| print x, " " }

produces:

c b a

Overloads:



1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
# File 'array.c', line 1799

static VALUE
rb_ary_reverse_each(VALUE ary)
{
    long len;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    len = RARRAY_LEN(ary);
    while (len--) {
	rb_yield(RARRAY_AREF(ary, len));
	if (RARRAY_LEN(ary) < len) {
	    len = RARRAY_LEN(ary);
	}
    }
    return ary;
}

- (Integer?) rindex(obj) - (Integer?) rindex {|item| ... } - (Enumerator) rindex

Returns the index of the last object in self == to obj.

If a block is given instead of an argument, returns the index of the first object for which the block returns true, starting from the last object.

Returns nil if no match is found.

See also Array#index.

If neither block nor argument is given, an Enumerator is returned instead.

a = [ "a", "b", "b", "b", "c" ]
a.rindex("b")             #=> 3
a.rindex("z")             #=> nil
a.rindex { |x| x == "b" } #=> 3

Overloads:



1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
# File 'array.c', line 1460

static VALUE
rb_ary_rindex(int argc, VALUE *argv, VALUE ary)
{
    VALUE val;
    long i = RARRAY_LEN(ary);

    if (argc == 0) {
	RETURN_ENUMERATOR(ary, 0, 0);
	while (i--) {
	    if (RTEST(rb_yield(RARRAY_AREF(ary, i))))
		return LONG2NUM(i);
	    if (i > RARRAY_LEN(ary)) {
		i = RARRAY_LEN(ary);
	    }
	}
	return Qnil;
    }
    rb_scan_args(argc, argv, "1", &val);
    if (rb_block_given_p())
	rb_warn("given block not used");
    while (i--) {
	if (rb_equal(RARRAY_AREF(ary, i), val))
	    return LONG2NUM(i);
	if (i > RARRAY_LEN(ary)) {
	    i = RARRAY_LEN(ary);
	}
    }
    return Qnil;
}

- (Object) rotate(count = 1)

Returns a new array by rotating self so that the element at count is the first element of the new array.

If count is negative then it rotates in the opposite direction, starting from the end of self where -1 is the last element.

a = [ "a", "b", "c", "d" ]
a.rotate         #=> ["b", "c", "d", "a"]
a                #=> ["a", "b", "c", "d"]
a.rotate(2)      #=> ["c", "d", "a", "b"]
a.rotate(-3)     #=> ["b", "c", "d", "a"]


2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
# File 'array.c', line 2237

static VALUE
rb_ary_rotate_m(int argc, VALUE *argv, VALUE ary)
{
    VALUE rotated;
    const VALUE *ptr;
    long len, cnt = 1;

    switch (argc) {
      case 1: cnt = NUM2LONG(argv[0]);
      case 0: break;
      default: rb_scan_args(argc, argv, "01", NULL);
    }

    len = RARRAY_LEN(ary);
    rotated = rb_ary_new2(len);
    if (len > 0) {
	cnt = rotate_count(cnt, len);
	ptr = RARRAY_RAWPTR(ary);
	len -= cnt;
	ary_memcpy(rotated, 0, len, ptr + cnt);
	ary_memcpy(rotated, len, cnt, ptr);
    }
    ARY_SET_LEN(rotated, RARRAY_LEN(ary));
    return rotated;
}

- (Object) rotate!(count = 1)

Rotates self in place so that the element at count comes first, and returns self.

If count is negative then it rotates in the opposite direction, starting from the end of the array where -1 is the last element.

a = [ "a", "b", "c", "d" ]
a.rotate!        #=> ["b", "c", "d", "a"]
a                #=> ["b", "c", "d", "a"]
a.rotate!(2)     #=> ["d", "a", "b", "c"]
a.rotate!(-3)    #=> ["a", "b", "c", "d"]


2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
# File 'array.c', line 2206

static VALUE
rb_ary_rotate_bang(int argc, VALUE *argv, VALUE ary)
{
    long n = 1;

    switch (argc) {
      case 1: n = NUM2LONG(argv[0]);
      case 0: break;
      default: rb_scan_args(argc, argv, "01", NULL);
    }
    rb_ary_rotate(ary, n);
    return ary;
}

- (Object) sample - (Object) sample(random:rng) - (Object) sample(n) - (Object) sample(n, random:rng)

Choose a random element or n random elements from the array.

The elements are chosen by using random and unique indices into the array in order to ensure that an element doesn't repeat itself unless the array already contained duplicate elements.

If the array is empty the first form returns nil and the second form returns an empty array.

The optional rng argument will be used as the random number generator.

a = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
a.sample         #=> 7
a.sample(4)      #=> [6, 4, 2, 5]

Overloads:



4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
# File 'array.c', line 4452

static VALUE
rb_ary_sample(int argc, VALUE *argv, VALUE ary)
{
    VALUE nv, result, *ptr;
    VALUE opts, randgen = rb_cRandom;
    long n, len, i, j, k, idx[10];
    long rnds[numberof(idx)];

    if (OPTHASH_GIVEN_P(opts)) {
	randgen = rb_hash_lookup2(opts, sym_random, randgen);
    }
    ptr = RARRAY_PTR(ary);
    len = RARRAY_LEN(ary);
    if (argc == 0) {
	if (len == 0) return Qnil;
	if (len == 1) {
	    i = 0;
	}
	else {
	    i = RAND_UPTO(len);
	    if ((len = RARRAY_LEN(ary)) <= i) return Qnil;
	    ptr = RARRAY_PTR(ary);
	}
	return ptr[i];
    }
    rb_scan_args(argc, argv, "1", &nv);
    n = NUM2LONG(nv);
    if (n < 0) rb_raise(rb_eArgError, "negative sample number");
    if (n > len) n = len;
    if (n <= numberof(idx)) {
	for (i = 0; i < n; ++i) {
	    rnds[i] = RAND_UPTO(len - i);
	}
    }
    k = len;
    len = RARRAY_LEN(ary);
    ptr = RARRAY_PTR(ary);
    if (len < k) {
	if (n <= numberof(idx)) {
	    for (i = 0; i < n; ++i) {
		if (rnds[i] >= len) {
		    return rb_ary_new2(0);
		}
	    }
	}
    }
    if (n > len) n = len;
    switch (n) {
      case 0:
	return rb_ary_new2(0);
      case 1:
	i = rnds[0];
	return rb_ary_new4(1, &ptr[i]);
      case 2:
	i = rnds[0];
	j = rnds[1];
	if (j >= i) j++;
	return rb_ary_new3(2, ptr[i], ptr[j]);
      case 3:
	i = rnds[0];
	j = rnds[1];
	k = rnds[2];
	{
	    long l = j, g = i;
	    if (j >= i) l = i, g = ++j;
	    if (k >= l && (++k >= g)) ++k;
	}
	return rb_ary_new3(3, ptr[i], ptr[j], ptr[k]);
    }
    if (n <= numberof(idx)) {
	VALUE *ptr_result;
	long sorted[numberof(idx)];
	sorted[0] = idx[0] = rnds[0];
	for (i=1; i<n; i++) {
	    k = rnds[i];
	    for (j = 0; j < i; ++j) {
		if (k < sorted[j]) break;
		++k;
	    }
	    memmove(&sorted[j+1], &sorted[j], sizeof(sorted[0])*(i-j));
	    sorted[j] = idx[i] = k;
	}
	result = rb_ary_new2(n);
	ptr_result = RARRAY_PTR(result);
	for (i=0; i<n; i++) {
	    ptr_result[i] = ptr[idx[i]];
	}
    }
    else {
	VALUE *ptr_result;
	result = rb_ary_new4(len, ptr);
	RBASIC_CLEAR_CLASS(result);
	ptr_result = RARRAY_PTR(result);
	RB_GC_GUARD(ary);
	for (i=0; i<n; i++) {
	    j = RAND_UPTO(len-i) + i;
	    nv = ptr_result[j];
	    ptr_result[j] = ptr_result[i];
	    ptr_result[i] = nv;
	}
	RBASIC_SET_CLASS_RAW(result, rb_cArray);
    }
    ARY_SET_LEN(result, n);

    return result;
}

- (Object) select {|item| ... } - (Enumerator) select

Returns a new array containing all elements of ary for which the given block returns a true value.

If no block is given, an Enumerator is returned instead.

[1,2,3,4,5].select { |num|  num.even?  }   #=> [2, 4]

a = %w{ a b c d e f }
a.select { |v| v =~ /[aeiou]/ }  #=> ["a", "e"]

See also Enumerable#select.

Overloads:



2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
# File 'array.c', line 2711

static VALUE
rb_ary_select(VALUE ary)
{
    VALUE result;
    long i;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    result = rb_ary_new2(RARRAY_LEN(ary));
    for (i = 0; i < RARRAY_LEN(ary); i++) {
	if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) {
	    rb_ary_push(result, rb_ary_elt(ary, i));
	}
    }
    return result;
}

- (nil) select! {|item| ... } - (Enumerator) select!

Invokes the given block passing in successive elements from self, deleting elements for which the block returns a false value.

If changes were made, it will return self, otherwise it returns nil.

See also Array#keep_if

If no block is given, an Enumerator is returned instead.

Overloads:

  • - (nil) select! {|item| ... }

    Yields:

    • (item)

    Returns:

    • (nil)
  • - (Enumerator) select!

    Returns:



2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
# File 'array.c', line 2743

static VALUE
rb_ary_select_bang(VALUE ary)
{
    long i1, i2;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    rb_ary_modify(ary);
    for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
	VALUE v = RARRAY_AREF(ary, i1);
	if (!RTEST(rb_yield(v))) continue;
	if (i1 != i2) {
	    rb_ary_store(ary, i2, v);
	}
	i2++;
    }

    if (RARRAY_LEN(ary) == i2) return Qnil;
    if (i2 < RARRAY_LEN(ary))
	ARY_SET_LEN(ary, i2);
    return ary;
}

- (Object?) shift - (Object) shift(n)

Removes the first element of self and returns it (shifting all other elements down by one). Returns nil if the array is empty.

If a number n is given, returns an array of the first n elements (or less) just like array.slice!(0, n) does. With ary containing only the remainder elements, not including what was shifted to new_ary. See also Array#unshift for the opposite effect.

args = [ "-m", "-q", "filename" ]
args.shift     #=> "-m"
args           #=> ["-q", "filename"]

args = [ "-m", "-q", "filename" ]
args.shift(2)  #=> ["-m", "-q"]
args           #=> ["filename"]

Overloads:



1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
# File 'array.c', line 1042

static VALUE
rb_ary_shift_m(int argc, VALUE *argv, VALUE ary)
{
    VALUE result;
    long n;

    if (argc == 0) {
	return rb_ary_shift(ary);
    }

    rb_ary_modify_check(ary);
    result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST);
    n = RARRAY_LEN(result);
    if (ARY_SHARED_P(ary)) {
	if (ARY_SHARED_NUM(ARY_SHARED(ary)) == 1) {
	    ary_mem_clear(ary, 0, n);
	}
        ARY_INCREASE_PTR(ary, n);
    }
    else {
	MEMMOVE(RARRAY_PTR(ary), RARRAY_PTR(ary)+n, VALUE, RARRAY_LEN(ary)-n);
    }
    ARY_INCREASE_LEN(ary, -n);

    return result;
}

- (Object) shuffle - (Object) shuffle(random:rng)

Returns a new array with elements of self shuffled.

a = [ 1, 2, 3 ]           #=> [1, 2, 3]
a.shuffle                 #=> [2, 3, 1]

The optional rng argument will be used as the random number generator.

a.shuffle(random: Random.new(1))  #=> [1, 3, 2]


4419
4420
4421
4422
4423
4424
4425
# File 'array.c', line 4419

static VALUE
rb_ary_shuffle(int argc, VALUE *argv, VALUE ary)
{
    ary = rb_ary_dup(ary);
    rb_ary_shuffle_bang(argc, argv, ary);
    return ary;
}

- (Object) shuffle! - (Object) shuffle!(random:rng)

Shuffles elements in self in place.

The optional rng argument will be used as the random number generator.



4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
# File 'array.c', line 4375

static VALUE
rb_ary_shuffle_bang(int argc, VALUE *argv, VALUE ary)
{
    VALUE *ptr, opts, *snap_ptr, randgen = rb_cRandom;
    long i, snap_len;

    if (OPTHASH_GIVEN_P(opts)) {
	randgen = rb_hash_lookup2(opts, sym_random, randgen);
    }
    rb_check_arity(argc, 0, 0);
    rb_ary_modify(ary);
    i = RARRAY_LEN(ary);
    ptr = RARRAY_PTR(ary);
    snap_len = i;
    snap_ptr = ptr;
    while (i) {
	long j = RAND_UPTO(i);
	VALUE tmp;
	if (snap_len != RARRAY_LEN(ary) || snap_ptr != RARRAY_PTR(ary)) {
	    rb_raise(rb_eRuntimeError, "modified during shuffle");
	}
	tmp = ptr[--i];
	ptr[i] = ptr[j];
	ptr[j] = tmp;
    }
    return ary;
}

- (Object?) [](index) - (nil) [](start, length) - (nil) [](range) - (Object?) slice(index) - (nil) slice(start, length) - (nil) slice(range)

Element Reference --- Returns the element at index, or returns a subarray starting at the start index and continuing for length elements, or returns a subarray specified by range of indices.

Negative indices count backward from the end of the array (-1 is the last element). For start and range cases the starting index is just before an element. Additionally, an empty array is returned when the starting index for an element range is at the end of the array.

Returns nil if the index (or starting index) are out of range.

a = [ "a", "b", "c", "d", "e" ]
a[2] +  a[0] + a[1]    #=> "cab"
a[6]                   #=> nil
a[1, 2]                #=> [ "b", "c" ]
a[1..3]                #=> [ "b", "c", "d" ]
a[4..7]                #=> [ "e" ]
a[6..10]               #=> nil
a[-3, 3]               #=> [ "c", "d", "e" ]
# special cases
a[5]                   #=> nil
a[6, 1]                #=> nil
a[5, 1]                #=> []
a[5..10]               #=> []

Overloads:

  • - (Object?) [](index)

    Returns:

  • - (nil) [](start, length)

    Returns:

    • (nil)
  • - (nil) [](range)

    Returns:

    • (nil)
  • - (Object?) slice(index)

    Returns:

  • - (nil) slice(start, length)

    Returns:

    • (nil)
  • - (nil) slice(range)

    Returns:

    • (nil)


1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
# File 'array.c', line 1227

VALUE
rb_ary_aref(int argc, VALUE *argv, VALUE ary)
{
    VALUE arg;
    long beg, len;

    if (argc == 2) {
	beg = NUM2LONG(argv[0]);
	len = NUM2LONG(argv[1]);
	if (beg < 0) {
	    beg += RARRAY_LEN(ary);
	}
	return rb_ary_subseq(ary, beg, len);
    }
    if (argc != 1) {
	rb_scan_args(argc, argv, "11", NULL, NULL);
    }
    arg = argv[0];
    /* special case - speeding up */
    if (FIXNUM_P(arg)) {
	return rb_ary_entry(ary, FIX2LONG(arg));
    }
    /* check if idx is Range */
    switch (rb_range_beg_len(arg, &beg, &len, RARRAY_LEN(ary), 0)) {
      case Qfalse:
	break;
      case Qnil:
	return Qnil;
      default:
	return rb_ary_subseq(ary, beg, len);
    }
    return rb_ary_entry(ary, NUM2LONG(arg));
}

- (Object?) slice!(index) - (nil) slice!(start, length) - (nil) slice!(range)

Deletes the element(s) given by an index (optionally up to length elements) or by a range.

Returns the deleted object (or objects), or nil if the index is out of range.

a = [ "a", "b", "c" ]
a.slice!(1)     #=> "b"
a               #=> ["a", "c"]
a.slice!(-1)    #=> "c"
a               #=> ["a"]
a.slice!(100)   #=> nil
a               #=> ["a"]

Overloads:

  • - (Object?) slice!(index)

    Returns:

  • - (nil) slice!(start, length)

    Returns:

    • (nil)
  • - (nil) slice!(range)

    Returns:

    • (nil)


2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
# File 'array.c', line 2939

static VALUE
rb_ary_slice_bang(int argc, VALUE *argv, VALUE ary)
{
    VALUE arg1, arg2;
    long pos, len, orig_len;

    rb_ary_modify_check(ary);
    if (argc == 2) {
	pos = NUM2LONG(argv[0]);
	len = NUM2LONG(argv[1]);
      delete_pos_len:
	if (len < 0) return Qnil;
	orig_len = RARRAY_LEN(ary);
	if (pos < 0) {
	    pos += orig_len;
	    if (pos < 0) return Qnil;
	}
	else if (orig_len < pos) return Qnil;
	if (orig_len < pos + len) {
	    len = orig_len - pos;
	}
	if (len == 0) return rb_ary_new2(0);
	arg2 = rb_ary_new4(len, RARRAY_RAWPTR(ary)+pos);
	RBASIC_SET_CLASS(arg2, rb_obj_class(ary));
	rb_ary_splice(ary, pos, len, Qundef);
	return arg2;
    }

    if (argc != 1) {
	/* error report */
	rb_scan_args(argc, argv, "11", NULL, NULL);
    }
    arg1 = argv[0];

    if (!FIXNUM_P(arg1)) {
	switch (rb_range_beg_len(arg1, &pos, &len, RARRAY_LEN(ary), 0)) {
	  case Qtrue:
	    /* valid range */
	    goto delete_pos_len;
	  case Qnil:
	    /* invalid range */
	    return Qnil;
	  default:
	    /* not a range */
	    break;
	}
    }

    return rb_ary_delete_at(ary, NUM2LONG(arg1));
}

- (Object) sort - (Object) sort {|a, b| ... }

Returns a new array created by sorting self.

Comparisons for the sort will be done using the <=> operator or using an optional code block.

The block must implement a comparison between a and b, and return -1, when a follows b, 0 when a and b are equivalent, or +1 if b follows a.

See also Enumerable#sort_by.

a = [ "d", "a", "e", "c", "b" ]
a.sort                    #=> ["a", "b", "c", "d", "e"]
a.sort { |x,y| y <=> x }  #=> ["e", "d", "c", "b", "a"]

Overloads:

  • - (Object) sort {|a, b| ... }

    Yields:

    • (a, b)


2435
2436
2437
2438
2439
2440
2441
# File 'array.c', line 2435

VALUE
rb_ary_sort(VALUE ary)
{
    ary = rb_ary_dup(ary);
    rb_ary_sort_bang(ary);
    return ary;
}

- (Object) sort! - (Object) sort! {|a, b| ... }

Sorts self in place.

Comparisons for the sort will be done using the <=> operator or using an optional code block.

The block must implement a comparison between a and b, and return -1, when a follows b, 0 when a and b are equivalent, or +1 if b follows a.

See also Enumerable#sort_by.

a = [ "d", "a", "e", "c", "b" ]
a.sort!                    #=> ["a", "b", "c", "d", "e"]
a.sort! { |x,y| y <=> x }  #=> ["e", "d", "c", "b", "a"]

Overloads:

  • - (Object) sort! {|a, b| ... }

    Yields:

    • (a, b)


2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
# File 'array.c', line 2353

VALUE
rb_ary_sort_bang(VALUE ary)
{
    rb_ary_modify(ary);
    assert(!ARY_SHARED_P(ary));
    if (RARRAY_LEN(ary) > 1) {
	VALUE tmp = ary_make_substitution(ary); /* only ary refers tmp */
	struct ary_sort_data data;
	long len = RARRAY_LEN(ary);

	RBASIC_CLEAR_CLASS(tmp);
	data.ary = tmp;
	data.opt_methods = 0;
	data.opt_inited = 0;
	RARRAY_PTR_USE(tmp, ptr, {
	    ruby_qsort(ptr, len, sizeof(VALUE),
		       rb_block_given_p()?sort_1:sort_2, &data);
	}); /* WB: no new reference */
	rb_ary_modify(ary);
        if (ARY_EMBED_P(tmp)) {
            if (ARY_SHARED_P(ary)) { /* ary might be destructively operated in the given block */
                rb_ary_unshare(ary);
            }
            FL_SET_EMBED(ary);
	    ary_memcpy(ary, 0, ARY_EMBED_LEN(tmp), ARY_EMBED_PTR(tmp));
            ARY_SET_LEN(ary, ARY_EMBED_LEN(tmp));
        }
        else {
            if (!ARY_EMBED_P(ary) && ARY_HEAP_PTR(ary) == ARY_HEAP_PTR(tmp)) {
                FL_UNSET_SHARED(ary);
                ARY_SET_CAPA(ary, RARRAY_LEN(tmp));
            }
            else {
                assert(!ARY_SHARED_P(tmp));
                if (ARY_EMBED_P(ary)) {
                    FL_UNSET_EMBED(ary);
                }
                else if (ARY_SHARED_P(ary)) {
                    /* ary might be destructively operated in the given block */
                    rb_ary_unshare(ary);
                }
                else {
		    xfree((void *)ARY_HEAP_PTR(ary));
                }
                ARY_SET_PTR(ary, RARRAY_RAWPTR(tmp));
                ARY_SET_HEAP_LEN(ary, len);
                ARY_SET_CAPA(ary, RARRAY_LEN(tmp));
            }
            /* tmp was lost ownership for the ptr */
            FL_UNSET(tmp, FL_FREEZE);
            FL_SET_EMBED(tmp);
            ARY_SET_EMBED_LEN(tmp, 0);
            FL_SET(tmp, FL_FREEZE);
	}
        /* tmp will be GC'ed. */
        RBASIC_SET_CLASS_RAW(tmp, rb_cArray); /* rb_cArray must be marked */
    }
    return ary;
}

- (Object) sort_by! {|obj| ... } - (Enumerator) sort_by!

Sorts self in place using a set of keys generated by mapping the values in self through the given block.

If no block is given, an Enumerator is returned instead.

Overloads:



2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
# File 'array.c', line 2562

static VALUE
rb_ary_sort_by_bang(VALUE ary)
{
    VALUE sorted;

    RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
    rb_ary_modify(ary);
    sorted = rb_block_call(ary, rb_intern("sort_by"), 0, 0, sort_by_i, 0);
    rb_ary_replace(ary, sorted);
    return ary;
}

- (Object) take(n)

Returns first n elements from the array.

If a negative number is given, raises an ArgumentError.

See also Array#drop

a = [1, 2, 3, 4, 5, 0]
a.take(3)             #=> [1, 2, 3]


5187
5188
5189
5190
5191
5192
5193
5194
5195
# File 'array.c', line 5187

static VALUE
rb_ary_take(VALUE obj, VALUE n)
{
    long len = NUM2LONG(n);
    if (len < 0) {
	rb_raise(rb_eArgError, "attempt to take negative size");
    }
    return rb_ary_subseq(obj, 0, len);
}

- (Object) take_while {|arr| ... } - (Enumerator) take_while

Passes elements to the block until the block returns nil or false, then stops iterating and returns an array of all prior elements.

If no block is given, an Enumerator is returned instead.

See also Array#drop_while

a = [1, 2, 3, 4, 5, 0]
a.take_while { |i| i < 3 }  #=> [1, 2]

Overloads:



5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
# File 'array.c', line 5214

static VALUE
rb_ary_take_while(VALUE ary)
{
    long i;

    RETURN_ENUMERATOR(ary, 0, 0);
    for (i = 0; i < RARRAY_LEN(ary); i++) {
	if (!RTEST(rb_yield(RARRAY_AREF(ary, i)))) break;
    }
    return rb_ary_take(ary, LONG2FIX(i));
}

- (Object) to_a

Returns self.

If called on a subclass of Array, converts the receiver to an Array object.



2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
# File 'array.c', line 2072

static VALUE
rb_ary_to_a(VALUE ary)
{
    if (rb_obj_class(ary) != rb_cArray) {
	VALUE dup = rb_ary_new2(RARRAY_LEN(ary));
	rb_ary_replace(dup, ary);
	return dup;
    }
    return ary;
}

- (Object) to_ary

Returns self.



2090
2091
2092
2093
2094
# File 'array.c', line 2090

static VALUE
rb_ary_to_ary_m(VALUE ary)
{
    return ary;
}

- (Object) transpose

Assumes that self is an array of arrays and transposes the rows and columns.

a = [[1,2], [3,4], [5,6]]
a.transpose   #=> [[1, 3, 5], [2, 4, 6]]

If the length of the subarrays don't match, an IndexError is raised.



3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
# File 'array.c', line 3206

static VALUE
rb_ary_transpose(VALUE ary)
{
    long elen = -1, alen, i, j;
    VALUE tmp, result = 0;

    alen = RARRAY_LEN(ary);
    if (alen == 0) return rb_ary_dup(ary);
    for (i=0; i<alen; i++) {
	tmp = to_ary(rb_ary_elt(ary, i));
	if (elen < 0) {		/* first element */
	    elen = RARRAY_LEN(tmp);
	    result = rb_ary_new2(elen);
	    for (j=0; j<elen; j++) {
		rb_ary_store(result, j, rb_ary_new2(alen));
	    }
	}
	else if (elen != RARRAY_LEN(tmp)) {
	    rb_raise(rb_eIndexError, "element size differs (%ld should be %ld)",
		     RARRAY_LEN(tmp), elen);
	}
	for (j=0; j<elen; j++) {
	    rb_ary_store(rb_ary_elt(result, j), i, rb_ary_elt(tmp, j));
	}
    }
    return result;
}

- (Object) uniq - (Object) uniq {|item| ... }

Returns a new array by removing duplicate values in self.

If a block is given, it will use the return value of the block for comparison.

It compares values using their #hash and #eql? methods for efficiency.

a = [ "a", "a", "b", "b", "c" ]
a.uniq   # => ["a", "b", "c"]

b = [["student","sam"], ["student","george"], ["teacher","matz"]]
b.uniq { |s| s.first } # => [["student", "sam"], ["teacher", "matz"]]

Overloads:

  • - (Object) uniq {|item| ... }

    Yields:

    • (item)


4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
# File 'array.c', line 4088

static VALUE
rb_ary_uniq(VALUE ary)
{
    VALUE hash, uniq, v;
    long i;

    if (RARRAY_LEN(ary) <= 1)
        return rb_ary_dup(ary);
    if (rb_block_given_p()) {
	hash = ary_make_hash_by(ary);
	uniq = ary_new(rb_obj_class(ary), RHASH_SIZE(hash));
	st_foreach(rb_hash_tbl_raw(hash), push_value, uniq);
    }
    else {
	hash = ary_make_hash(ary);
	uniq = ary_new(rb_obj_class(ary), RHASH_SIZE(hash));
	for (i=0; i<RARRAY_LEN(ary); i++) {
	    st_data_t vv = (st_data_t)(v = rb_ary_elt(ary, i));
	    if (st_delete(rb_hash_tbl_raw(hash), &vv, 0)) {
		rb_ary_push(uniq, v);
	    }
	}
    }
    ary_recycle_hash(hash);

    return uniq;
}

- (nil) uniq! - (nil) uniq! {|item| ... }

Removes duplicate elements from self.

If a block is given, it will use the return value of the block for comparison.

It compares values using their #hash and #eql? methods for efficiency.

Returns nil if no changes are made (that is, no duplicates are found).

a = [ "a", "a", "b", "b", "c" ]
a.uniq!   # => ["a", "b", "c"]

b = [ "a", "b", "c" ]
b.uniq!   # => nil

c = [["student","sam"], ["student","george"], ["teacher","matz"]]
c.uniq! { |s| s.first } # => [["student", "sam"], ["teacher", "matz"]]

Overloads:

  • - (nil) uniq!

    Returns:

    • (nil)
  • - (nil) uniq! {|item| ... }

    Yields:

    • (item)

    Returns:

    • (nil)


4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
# File 'array.c', line 4028

static VALUE
rb_ary_uniq_bang(VALUE ary)
{
    VALUE hash, v;
    long i, j;

    rb_ary_modify_check(ary);
    if (RARRAY_LEN(ary) <= 1)
        return Qnil;
    if (rb_block_given_p()) {
	hash = ary_make_hash_by(ary);
	if (RARRAY_LEN(ary) == (i = RHASH_SIZE(hash))) {
	    return Qnil;
	}
	rb_ary_modify(ary);
	ARY_SET_LEN(ary, 0);
	if (ARY_SHARED_P(ary) && !ARY_EMBED_P(ary)) {
	    rb_ary_unshare(ary);
	    FL_SET_EMBED(ary);
	}
	ary_resize_capa(ary, i);
	st_foreach(rb_hash_tbl_raw(hash), push_value, ary);
    }
    else {
	hash = ary_make_hash(ary);
	if (RARRAY_LEN(ary) == (long)RHASH_SIZE(hash)) {
	    return Qnil;
	}
	for (i=j=0; i<RARRAY_LEN(ary); i++) {
	    st_data_t vv = (st_data_t)(v = rb_ary_elt(ary, i));
	    if (st_delete(rb_hash_tbl_raw(hash), &vv, 0)) {
		rb_ary_store(ary, j++, v);
	    }
	}
	ARY_SET_LEN(ary, j);
    }
    ary_recycle_hash(hash);

    return ary;
}

- (Object) unshift(obj, ...)

Prepends objects to the front of self, moving other elements upwards. See also Array#shift for the opposite effect.

a = [ "b", "c", "d" ]
a.unshift("a")   #=> ["a", "b", "c", "d"]
a.unshift(1, 2)  #=> [ 1, 2, "a", "b", "c", "d"]


1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
# File 'array.c', line 1132

static VALUE
rb_ary_unshift_m(int argc, VALUE *argv, VALUE ary)
{
    long len = RARRAY_LEN(ary);

    if (argc == 0) {
	rb_ary_modify_check(ary);
	return ary;
    }

    ary_ensure_room_for_unshift(ary, argc);
    ary_memcpy(ary, 0, argc, argv);
    ARY_SET_LEN(ary, len + argc);
    return ary;
}

- (Object) values_at(selector, ...)

Returns an array containing the elements in self corresponding to the given selector(s).

The selectors may be either integer indices or ranges.

See also Array#select.

a = %w{ a b c d e f }
a.values_at(1, 3, 5)          # => ["b", "d", "f"]
a.values_at(1, 3, 5, 7)       # => ["b", "d", "f", nil]
a.values_at(-1, -2, -2, -7)   # => ["f", "e", "e", nil]
a.values_at(4..6, 3...6)      # => ["e", "f", nil, "d", "e", "f"]


2686
2687
2688
2689
2690
# File 'array.c', line 2686

static VALUE
rb_ary_values_at(int argc, VALUE *argv, VALUE ary)
{
    return rb_get_values_at(ary, RARRAY_LEN(ary), argc, argv, rb_ary_entry);
}

- (Object) zip(arg, ...) - (nil) zip(arg, ...) {|arr| ... }

Converts any arguments to arrays, then merges elements of self with corresponding elements from each argument.

This generates a sequence of ary.size n-element arrays, where n is one more than the count of arguments.

If the size of any argument is less than the size of the initial array, nil values are supplied.

If a block is given, it is invoked for each output array, otherwise an array of arrays is returned.

a = [ 4, 5, 6 ]
b = [ 7, 8, 9 ]
[1, 2, 3].zip(a, b)   #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
[1, 2].zip(a, b)      #=> [[1, 4, 7], [2, 5, 8]]
a.zip([1, 2], [8])    #=> [[4, 1, 8], [5, 2, nil], [6, nil, nil]]

Overloads:

  • - (nil) zip(arg, ...) {|arr| ... }

    Yields:

    • (arr)

    Returns:

    • (nil)


3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
# File 'array.c', line 3146

static VALUE
rb_ary_zip(int argc, VALUE *argv, VALUE ary)
{
    int i, j, block_given, arity = 0;
    long len;
    VALUE result = Qnil;

    len = RARRAY_LEN(ary);
    for (i=0; i<argc; i++) {
	argv[i] = take_items(argv[i], len);
    }

    block_given = rb_block_given_p();
    if (block_given)
	arity = rb_block_arity();
    else
	result = rb_ary_new2(len);

    if (block_given && arity > 1 && argc+1 < 0x100) {
	VALUE *tmp = ALLOCA_N(VALUE, argc+1);

	for (i=0; i<RARRAY_LEN(ary); i++) {
	    tmp[0] = RARRAY_AREF(ary, i);
	    for (j=0; j<argc; j++) {
		tmp[j+1] = rb_ary_elt(argv[j], i);
	    }
	    rb_yield_values2(argc+1, tmp);
	}
    }
    else {
	for (i=0; i<RARRAY_LEN(ary); i++) {
	    VALUE tmp = rb_ary_new2(argc+1);

	    rb_ary_push(tmp, RARRAY_AREF(ary, i));
	    for (j=0; j<argc; j++) {
		rb_ary_push(tmp, rb_ary_elt(argv[j], i));
	    }
	    if (block_given)
		rb_yield(tmp);
	    else
		rb_ary_push(result, tmp);
	}
    }

    return result;
}

- (Object) |(other_ary)

Set Union --- Returns a new array by joining ary with other_ary, excluding any duplicates and preserving the order from the original array.

It compares elements using their #hash and #eql? methods for efficiency.

[ "a", "b", "c" ] | [ "c", "d", "a" ]    #=> [ "a", "b", "c", "d" ]

See also Array#uniq.



3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
# File 'array.c', line 3969

static VALUE
rb_ary_or(VALUE ary1, VALUE ary2)
{
    VALUE hash, ary3, v;
    st_data_t vv;
    long i;

    ary2 = to_ary(ary2);
    ary3 = rb_ary_new2(RARRAY_LEN(ary1)+RARRAY_LEN(ary2));
    hash = ary_add_hash(ary_make_hash(ary1), ary2);

    for (i=0; i<RARRAY_LEN(ary1); i++) {
	vv = (st_data_t)(v = rb_ary_elt(ary1, i));
	if (st_delete(rb_hash_tbl_raw(hash), &vv, 0)) {
	    rb_ary_push(ary3, v);
	}
    }
    for (i=0; i<RARRAY_LEN(ary2); i++) {
	vv = (st_data_t)(v = rb_ary_elt(ary2, i));
	if (st_delete(rb_hash_tbl_raw(hash), &vv, 0)) {
	    rb_ary_push(ary3, v);
	}
    }
    ary_recycle_hash(hash);
    return ary3;
}

Commenting is here to help enhance the documentation. For example, sample code, or clarification of the documentation.

If you have questions about Ruby or the documentation, please post to one of the Ruby mailing lists. You will get better, faster, help that way.

If you wish to post a correction of the docs, please do so, but also file bug report so that it can be corrected for the next release. Thank you.

blog comments powered by Disqus